Stringent Diophantine

How many ordered pairs of integers ( x , y ) (x, y) satisfy the equation x 2 + y 2 = 2 ( x + y ) + x y ? x^2 + y^2 = 2(x + y) + xy ?

4 5 6 7 8 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hongqi Wang
Jan 16, 2021

x 2 + y 2 = 2 ( x + y ) + x y x^2 + y^2 = 2(x + y) + xy

if both x, y are odd, then left is even but right is odd; if one of x, y is odd and the other is even, then left is odd but right is even. So both x, y must be even.

Let x = 2 u x = 2u , y = 2 v y = 2v , then: 4 u 2 + 4 v 2 = 4 ( u + v ) + 4 u v 2 u 2 + 2 v 2 = 2 ( u + v ) + 2 u v ( u v ) 2 + ( u 1 ) 2 + ( v 1 ) 2 = 2 \\ 4u^2 + 4v^2 = 4(u + v) + 4uv \\ 2u^2 + 2v^2 = 2(u + v) + 2uv \\ (u - v)^2 + (u - 1)^2 + (v- 1)^2 = 2

Obviously, one of left 3 terms must be 0 and the other 2 are 1, then we can get 6 solutions for ( u , v ) (u, v) : ( 0 , 0 ) , ( 2 , 2 ) , ( 1 , 0 ) , ( 1 , 2 ) , ( 0 , 1 ) , ( 2 , 1 ) (0, 0), (2, 2), (1, 0), (1, 2), (0, 1), (2, 1)

i. e. for ( x , y ) (x, y) : ( 0 , 0 ) , ( 4 , 4 ) , ( 2 , 0 ) , ( 2 , 4 ) , ( 0 , 2 ) , ( 4 , 2 ) (0,0), (4,4), (2, 0), (2,4), (0,2), (4,2)

Sathvik Acharya
Jan 15, 2021

x 2 + y 2 2 x 2 y x y = 0 x^2+y^2-2x-2y-xy=0 We treat the above equation as a quadratic in terms of x x . So, we have, x 2 ( y + 2 ) x + y 2 2 y x^2-(y+2)x+y^2-2y x = y + 2 ± ( y + 2 ) 2 4 ( y 2 2 y ) 2 = y + 2 ± 3 y 2 + 12 y + 4 2 \begin{aligned} \implies x&=\frac{y+2\pm\sqrt{(y+2)^2-4(y^2-2y)}}{2} \\ &=\frac{y+2\pm\sqrt{-3y^2+12y+4}}{2} \end{aligned} Since x x is an integer, the discriminant of the quadratic, 3 y 2 + 12 y + 4 -3y^2+12y+4 is greater that 0 0 . 3 y 2 + 12 y + 4 > 0 3 y ( y 4 ) < 4 -3y^2+12y+4>0 \implies 3y(y-4)<4 Since y y is an integer that satisfies the above inequality, y { 0 , 1 , 2 , 3 , 4 } y\in \{0,1,2,3,4\}

Checking each of the four cases, the order pairs ( x , y ) (x,y) are, ( x , y ) { ( 0 , 0 ) , ( 2 , 0 ) , ( 0 , 2 ) , ( 4 , 2 ) , ( 2 , 4 ) , ( 4 , 4 ) } (x,y)\in \{(0,0),(2,0),(0,2),(4,2),(2,4),(4,4)\} Therefore, there are 6 \boxed{6} order pairs ( x , y ) (x,y) that satisfy the given equation.

ChengYiin Ong
Jan 18, 2021

We have

x 2 x y + y 2 2 x 2 y = 0 x 2 2 x y + y 2 + x 2 4 x + 4 + y 2 4 y + 4 = 8 ( x y ) 2 + ( x 2 ) 2 + ( y 2 ) 2 = 8 \begin{aligned} x^2-xy+y^2-2x-2y=&0 \\ x^2-2xy+y^2+x^2-4x+4+y^2-4y+4=&8 \\ (x-y)^2+(x-2)^2+(y-2)^2=&8 \end{aligned}

which means that we have ( ( x y ) 2 , ( x 2 ) 2 , ( y 2 ) 2 ) { ( 0 , 4 , 4 ) , ( 4 , 0 , 4 ) , ( 4 , 4 , 0 ) } ((x-y)^2, (x-2)^2, (y-2)^2)\in \{(0,4,4), (4,0,4), (4,4,0)\} (since 0 ( x y ) 2 , ( x 2 ) 2 , ( y 2 ) 2 8 0\leq (x-y)^2, (x-2)^2, (y-2)^2 \leq 8 ) and by considering each case, we get that ( x , y ) = ( 0 , 0 ) , ( 4 , 4 ) , ( 2 , 0 ) , ( 2 , 4 ) , ( 0 , 2 ) , ( 4 , 2 ) . \boxed{(x,y)=(0,0),(4,4),(2,0),(2,4),(0,2),(4,2)}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...