Let a and b be the roots of the quadratic equation x 2 − 1 0 0 c x − 1 0 1 d = 0 .
Let c and d be the roots of the quadratic equation x 2 − 1 0 0 a x − 1 0 1 b = 0 .
If a , b , c and d are distinct, non zero real numbers, then find the value of:
a + b + c + d
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sir @Chew-Seong Cheong ,I'm getting 1020200.On multiplying eqn 2 and 4 a*c=10201.Since a,c are distinct hence a=10201 and c=1 or vice versa.
Log in to reply
a and c are distinct reals but not necessary integers.
From a + c = 1 0 2 0 1 and a c = 1 0 2 0 1 , we have a 2 − 1 0 2 0 1 a + 1 0 2 0 1 = 0 ⇒ a , c = 2 1 0 2 0 1 ± 1 0 4 0 1 9 5 9 7 .
⇒ a , c = { 1 . 0 0 0 0 9 8 0 4 9 1 0 1 9 9 . 9 9 9 9 ⇒ b , d = { − 1 0 0 9 9 . 9 9 0 1 1 0 1 9 9 9 8 . 9 9
⇒ a + b + c + d = 1 0 2 0 1 0 0
Log in to reply
Ok I got it sir I mistaken a and c for being intergers.
sir the solutions isnt exact,you must have some decimals
not a problem of 400 points
Problem Loading...
Note Loading...
Set Loading...
Using Vieta's formulas, we have:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ a + b = 1 0 0 c a b = − 1 0 1 d c + d = 1 0 0 a c d = − 1 0 1 b . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) . . . ( 4 ) ⇒ ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ E q . 1 : E q . 3 : E q . 2 : E q . 4 : b = 1 0 0 c − a d = 1 0 0 a − c a ( 1 0 0 c − a ) = − 1 0 1 ( 1 0 0 a − c ) c ( 1 0 0 a − c ) = − 1 0 1 ( 1 0 0 c − a ) . . . ( 1 a ) . . . ( 3 a ) . . . ( 2 a ) . . . ( 4 a ) ⇒ { E q . 2 a : E q . 4 a : 1 0 0 a c − a 2 = − 1 0 1 0 0 a + 1 0 1 c 1 0 0 a c − c 2 = − 1 0 1 0 0 c + 1 0 1 a . . . ( 2 b ) . . . ( 4 b ) E q . 4 b − E q . 2 b : ⎩ ⎪ ⎨ ⎪ ⎧ a 2 − c 2 ( a + c ) ( a − c ) a + c = 1 0 1 0 0 ( a − c ) + 1 0 1 ( a − c ) = 1 0 2 0 1 ( a − c ) = 1 0 2 0 1 . . . ( 5 ) ⇒ ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ a + b + c + d = a + 1 0 0 c − a + c + 1 0 0 a − c = 1 0 0 ( a + c ) = 1 0 0 × 1 0 2 0 1 = 1 0 2 0 1 0 0