Symmetrical Quadratics!

Algebra Level 4

Let a a and b b be the roots of the quadratic equation x 2 100 c x 101 d = 0 x^2-100cx-101d=0 .

Let c c and d d be the roots of the quadratic equation x 2 100 a x 101 b = 0 x^2-100ax-101b=0 .

If a , b , c a,b,c and d d are distinct, non zero real numbers, then find the value of:

a + b + c + d \huge{\color{#69047E}{{a+b+c+d}}}


The answer is 1020100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 21, 2015

Using Vieta's formulas, we have:

{ a + b = 100 c . . . ( 1 ) a b = 101 d . . . ( 2 ) c + d = 100 a . . . ( 3 ) c d = 101 b . . . ( 4 ) { E q . 1 : b = 100 c a . . . ( 1 a ) E q . 3 : d = 100 a c . . . ( 3 a ) E q . 2 : a ( 100 c a ) = 101 ( 100 a c ) . . . ( 2 a ) E q . 4 : c ( 100 a c ) = 101 ( 100 c a ) . . . ( 4 a ) { E q . 2 a : 100 a c a 2 = 10100 a + 101 c . . . ( 2 b ) E q . 4 a : 100 a c c 2 = 10100 c + 101 a . . . ( 4 b ) E q . 4 b E q . 2 b : { a 2 c 2 = 10100 ( a c ) + 101 ( a c ) ( a + c ) ( a c ) = 10201 ( a c ) a + c = 10201 . . . ( 5 ) { a + b + c + d = a + 100 c a + c + 100 a c = 100 ( a + c ) = 100 × 10201 = 1020100 \begin{cases} a+b = 100c & ...(1) \\ ab = -101d & ...(2) \\ c+d = 100a & ...(3) \\ cd = -101b & ...(4) \end{cases} \\ \Rightarrow \begin{cases} Eq.1: & b = 100c - a & ...(1a) \\ Eq.3: & d = 100a - c & ...(3a) \\ Eq.2: & a(100c-a) = -101(100a-c) & ...(2a) \\ Eq.4: & c(100a-c) = -101(100c-a) & ...(4a) \end{cases} \\ \Rightarrow \begin{cases} Eq.2a: & 100ac-a^2 = -10100a+101c & ...(2b) \\ Eq.4a: & 100ac-c^2 = -10100c+101a & ...(4b) \end{cases} \\ Eq.4b-Eq.2b: \begin{cases} a^2-c^2 & = 10100(a-c)+101(a-c) \\ (a+c)(a-c) & = 10201(a-c) \\ a+c & = 10201 \quad ...(5) \end{cases} \\ \Rightarrow \begin{cases} a+b+c+d & = a+100c-a+c+100a-c \\ & = 100(a+c) \\ & = 100 \times 10201 \\ &= \boxed{1020100} \end{cases}

Sir @Chew-Seong Cheong ,I'm getting 1020200.On multiplying eqn 2 and 4 a*c=10201.Since a,c are distinct hence a=10201 and c=1 or vice versa.

Utkarsh Bansal - 6 years, 2 months ago

Log in to reply

a a and c c are distinct reals but not necessary integers.

From a + c = 10201 a+c=10201 and a c = 10201 ac=10201 , we have a 2 10201 a + 10201 = 0 a , c = 10201 ± 104019597 2 a^2-10201a+10201=0\quad \Rightarrow a,c = \dfrac {10201 \pm \sqrt{104019597}}{2} .

a , c = { 1.000098049 10199.9999 b , d = { 10099.9901 1019998.99 \Rightarrow a,c = \begin{cases} 1.000098049 \\ 10199.9999 \end{cases} \Rightarrow b,d = \begin{cases} -10099.9901 \\ 1019998.99 \end{cases}

a + b + c + d = 1020100 \Rightarrow a+b+c+d = \boxed{1020100}

Chew-Seong Cheong - 6 years, 2 months ago

Log in to reply

Ok I got it sir I mistaken a and c for being intergers.

Utkarsh Bansal - 6 years, 2 months ago

sir the solutions isnt exact,you must have some decimals

Omar El Mokhtar - 5 years, 11 months ago

not a problem of 400 points

Omar El Mokhtar - 5 years, 11 months ago

Log in to reply

It's rather LEVEL 4 now

Aakash Khandelwal - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...