Symmetric Sextic

Algebra Level 5

A sextic polynomial has five distinct turning points which form the vertices of a regular pentagon of unit radius. The magnitude of the leading coefficient of the polynomial is a b \frac ab , where a a and b b are positive coprime integers. Find a + b a+b .

( This problem is an extension/variation of the problem here . )


The answer is 69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 12, 2020

Due to symmetry of the regular pentagon, we can expect the sextic polynomial f ( x ) f(x) to be an even function with one of the vertices or turning points at x = 0 x=0 and the other four at x = ± cos 3 π 10 x=\pm \cos \frac {3\pi}{10} and x = ± cos π 10 x = \pm \cos \frac \pi{10} . Since turning points occur when f ( x ) = 0 f'(x)=0 , we have:

f ( x ) = x ( x + cos 3 π 10 ) ( x cos 3 π 10 ) ( x + cos π 10 ) ( x cos π 10 ) = x ( x 2 cos 2 3 π 10 ) ( x 2 cos 2 π 10 ) = x ( x 4 ( cos 2 3 π 10 + cos 2 π 10 ) x 2 + cos 2 3 π 10 cos 2 π 10 ) = x 5 5 4 x 3 + 5 16 x Integrate both sides w.r.t. x f ( x ) = k ( x 6 6 5 16 x 4 + 5 32 x 2 ) + C where k and C are constants. + \begin{aligned} f'(x) & = x \left(x+\cos \frac {3\pi}{10} \right) \left(x-\cos \frac {3\pi}{10} \right) \left(x+\cos \frac \pi{10} \right) \left(x-\cos \frac \pi{10} \right) \\ & = x \left(x^2-\cos^2 \frac {3\pi}{10} \right) \left(x^2-\cos^2 \frac \pi{10} \right) \\ & = x \left(x^4- \left(\cos^2 \frac {3\pi}{10} + \cos^2 \frac \pi{10} \right)x^2 + \cos^2 \frac {3\pi}{10} \cos^2 \frac \pi{10} \right) \\ & = x^5 - \frac 54 x^3 + \frac 5{16}x & \small \blue{\text{Integrate both sides w.r.t. }x} \\ \implies f(x) & = k \left(\frac {x^6}6 - \frac 5{16}x^4 + \frac 5{32}x^2 \right) + C & \small \blue{\text{where }k \text{ and }C \text{ are constants.}} +\end{aligned}

Let C = 0 C=0 . Then for positive first coefficienet k 6 \frac k6 , ( 0 , 0 ) (0,0) is the global minimum of f ( x ) f(x) . The other turning points are ( ± cos 3 π 10 , 1 + sin 3 π 10 ) \left(\pm \cos \frac {3\pi}{10}, 1+\sin \frac {3\pi}{10}\right) and ( ± cos π 10 , 1 sin π 10 ) \left(\pm \cos \frac \pi{10}, 1- \sin \frac \pi{10} \right) . Therefore,

{ k ( 1 6 cos 6 3 π 10 5 16 cos 4 3 π 10 + 5 32 cos 2 3 π 10 ) = 1 + sin 3 π 10 k = 76.8 k ( 1 6 cos 6 π 10 5 16 cos 4 π 10 + 5 32 cos 2 π 10 ) = 1 sin π 10 k = 76.8 \begin{cases} k \left(\frac 16 \cos^6 \frac {3\pi}{10} - \frac 5{16} \cos^4 \frac {3\pi}{10} + \frac 5{32} \cos^2 \frac {3\pi}{10}\right) = 1+\sin \frac {3\pi}{10} & \implies k = 76.8 \\ k \left(\frac 16 \cos^6 \frac {\pi}{10} - \frac 5{16} \cos^4 \frac {\pi}{10} + \frac 5{32} \cos^2 \frac {\pi}{10}\right) = 1-\sin \frac {\pi}{10} & \implies k = 76.8 \end{cases}

Therefore the leading coefficient is k 6 = 76.8 6 = 12.8 = 64 5 \dfrac k6 = \dfrac {76.8}6 = 12.8 = \dfrac {64}5 , a + b = 64 + 5 = 69 \implies a+b = 64+5 = \boxed{69} .

Nice solution!

Hypergeo H. - 1 year, 2 months ago

Log in to reply

Glad that your like it. Nice problem.

Chew-Seong Cheong - 1 year, 2 months ago
Hypergeo H.
Apr 12, 2020

My solution:

The sextic has turning points at each vertex. Hence there must be a double root at the origin.
Also, the sextic must be an even function, i.e. symmetrical about the y y- axis.
Based on the above, the sextic must be of the form y = k x 2 ( x 4 + a x 2 + b ) \displaystyle y=kx^2 (x^4+ax^2 +b) where k k is the leading coefficient.

Differentiating gives d y d x = 6 k x ( x 4 + 2 3 a x 2 + 1 3 b ) = 0 \frac {dy}{dx}=6kx (x^4+\tfrac 23 ax^2 +\tfrac 13 b) =0 at turning points.

Now consider the regular pentagon standing inverted with apex at the origin.
The non-origin vertices are ( ± sin θ , 1 cos θ ) , ( ± sin θ 2 , 1 + cos θ 2 ) ( ± \sin\theta, 1-\cos\theta), (\pm\sin\frac {\theta}2, 1+\cos\frac{\theta}2) ,
where θ = 2 π 5 \theta=\frac {2\pi}{5} , the central angle of the pentagon.

It can be shown that cos θ = 5 1 4 \cos\theta = \frac {\sqrt{5}-1}4 and cos θ 2 = 5 + 1 4 \cos\frac{\theta}2 = \frac {\sqrt{5}+1}4 .

This gives x 4 + 2 3 a x 2 + 1 3 b = 0 = ( x 2 sin 2 θ ) ( x 2 sin 2 θ 2 ) = ( x 2 5 + 5 8 ) ( x 2 5 5 8 ) x^4+\tfrac 23 ax^2 +\tfrac 13 b =0 =(x^2-\sin^2 \theta )(x^2 - \sin^2 \frac{\theta}2) = \left(x^2 - \frac {5+\sqrt{5}}8 \right) \left( x^2 -\frac {5-\sqrt{5}}8 \right) .

Sum of roots = 5 4 = 2 3 a a = 15 8 = \frac 54 = \frac 23 a \Rightarrow a = \frac {15}8 . Product of roots = 5 16 = 1 3 b b = 15 16 = \frac 5{16} = \frac 13b \Rightarrow b=\frac {15}{16} .

Hence the sextic is y = k x 2 ( x 4 + 15 8 x ² + 15 16 ) \displaystyle y=kx^2 (x^4+\tfrac {15}8x² +\tfrac {15}{16}) .

Substitute x ² = sin 2 θ = 5 + 5 8 x²=\sin^2 \theta =\frac {5+\sqrt{5}}8 and y = 1 cos θ = 5 5 4 y=1-\cos\theta =\frac {5-\sqrt{5}}4 .

After some nifty surd manipulation, we arrive at k = 64 5 \large k=\color{#D61F06}\frac {64}5 .

This can be confirmed by substituting x ² = sin 2 θ 2 = 5 5 8 x²=\sin^2 \frac\theta 2 =\frac {5-\sqrt{5}}8 and y = 1 + cos θ 2 = 5 + 5 4 y=1+\cos\frac\theta 2 =\frac {5+\sqrt{5}}4 .

The answer required is 64 + 5 = 69 64 + 5 = \color{#D61F06}69 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...