Symmetry

Algebra Level 4

x 4 y 5 + y 4 x 5 = 810 x 3 y 6 + y 3 x 6 = 945 \large \begin{aligned} x^4y^5 + y^4x^5 & = 810 \\ x^3y^6 + y^3x^6 & = 945 \end{aligned}

Let x , y R x, y \in \mathbb{R} satisfy the equations above. Find the sum of the digits of 2 x 3 + ( x y ) 3 + 2 y 3 \displaystyle 2x^3 + (xy)^3 + 2y^3 .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
May 30, 2017

E 1 : x 4 y 5 + y 4 x 5 = 810 E 2 : x 3 y 6 + y 3 x 6 = 945 \displaystyle \begin{aligned} E_1 \ : \ x^4y^5 + y^4x^5 = 810 \\ E_2 \ : \ x^3y^6 + y^3x^6 = 945 \end{aligned}

3 x 4 y 4 ( x + y ) + x 3 y 3 ( x 3 + y 3 ) = 3 810 + 945 Add 3 E 1 to E 2 and factor ( x y ) 3 ( x 3 + 3 x 2 y + 3 x y 2 + y 3 ) = 3375 ( x y ) 3 ( x + y ) 3 = 3375 Take the cube root of both sides x y ( x + y ) = 15 Note that E 1 = ( x y ) 3 x y ( x + y ) = 810 ( x y ) 3 = 810 15 = 54 Note that E 2 = ( x y ) 3 ( x 3 + y 3 ) = 945 x 3 + y 3 = 945 54 = 35 2 \begin{aligned} \displaystyle 3x^4y^4(x + y) + x^3y^3(x^3 + y^3) & = 3 \cdot 810 + 945 & \small \color{#3D99F6} \text{Add} \ 3 \cdot E_1 \ \text{to} \ E_2 \ \text{and factor} \\\\ (xy)^3(x^3 + 3x^2y + 3xy^2 + y^3) & = 3375 \\\\ (xy)^3(x + y)^3 & = 3375 & \small \color{#3D99F6} \text{Take the cube root of both sides} \\\\ xy(x + y) & = 15 & \small \color{#3D99F6} \text{Note that} \ E_1 = (xy)^3 \cdot xy(x + y) = 810 \\\\ \implies (xy)^3 & = \frac {810}{15} = 54 & \small \color{#3D99F6} \text{Note that} \ E_2 = (xy)^3(x^3 + y^3) = 945 \\\\ \implies x^3 + y^3 & = \frac{945}{54} = \frac{35}{2} \end{aligned}

2 x 3 + ( x y ) 3 + 2 y 3 = 54 + 35 2 2 = 89 \implies 2x^3 + (xy)^3 + 2y^3 = 54 + \frac{35}{2} \cdot 2 = 89

In which exam this question apear?

Ankur Sharma - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...