System 2

Algebra Level 5

{ x 3 + 3 y 3 x y 2 = 1 x 4 + 6 y 4 = x + 2 y \large\begin{cases} x^3+3y^3-xy^2=1 \\ x^4+6y^4=x+2y\end{cases} Let ( x 1 ; y 1 ) , ( x 2 ; y 2 ) , . . . , ( x n ; y n ) (x_1;y_1),(x_2;y_2),...,(x_n;y_n) be the solutions to the system above, calculate m = 1 n x m + y m \displaystyle\sum_{m=1}^{n} x_m+y_m (up to 2 decimal places)


The answer is 1.69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
May 13, 2016

The system is equivalent to { x 3 + 3 y 3 x y 2 = 1 x 4 + 6 y 4 = ( x 3 + 3 y 3 x y 2 ) x + 2 y \begin{cases} x^3+3y^3-xy^2=1 \\ x^4+6y^4=(x^3+3y^3-xy^2)x+2y\end{cases} { x 3 + 3 y 3 x y 2 = 1 6 y 4 3 y 3 x + x 2 y 2 2 y = 0 \Leftrightarrow\begin{cases} x^3+3y^3-xy^2=1 \\ 6y^4-3y^3x+x^2y^2-2y=0\end{cases} { x 3 + 3 y 3 x y 2 = 1 y ( 6 y 3 3 y 2 x + x 2 y 2 ) = 0 \Leftrightarrow\begin{cases} x^3+3y^3-xy^2=1 \\ y(6y^3-3y^2x+x^2y-2)=0\end{cases} From the second equation

y = 0 *y=0 we have x 3 = 1 x^3=1 ( x ; y ) = ( 1 ; 0 ) \therefore (x;y)=(1;0)

6 y 3 3 y 2 x + x 2 y 2 = 0 *6y^3-3y^2x+x^2y-2=0 , set x = k y ( k R ) x=ky \ (k\in R) , the system becomes { k 3 y 3 + 3 y 3 k y 3 = 1 6 y 3 3 k y 3 + k 2 y 3 = 2 \Leftrightarrow\begin{cases} k^3y^3+3y^3-ky^3=1 \\ 6y^3-3ky^3+k^2y^3=2\end{cases} { y 3 = 1 k 3 k + 3 y 3 = 2 k 2 3 k + 6 \Leftrightarrow\begin{cases} y^3=\frac{1}{k^3-k+3}\\y^3=\frac{2}{k^2-3k+6}\end{cases} { 1 k 3 k + 3 = 2 k 2 3 k + 6 y 3 = 1 k 3 k + 3 \Leftrightarrow\begin{cases}\frac{1}{k^3-k+3}=\frac{2}{k^2-3k+6} \\ y^3=\frac{1}{k^3-k+3}\end{cases} { 2 k 3 k 2 + k = 0 y 3 = 1 k 3 k + 3 \Leftrightarrow\begin{cases}2k^3-k^2+k=0\\ y^3=\frac{1}{k^3-k+3}\end{cases} { k = 0 y = 9 3 3 \Leftrightarrow\begin{cases} k=0 \\ y=\frac{\sqrt[3]{9}}{3}\end{cases} ( x ; y ) = ( 0 ; 9 3 3 ) \Rightarrow (x;y)=\bigg(0;\frac{\sqrt[3]{9}}{3}\bigg) So m = 1 n x m + y m = 1 + 9 3 3 1.69 \displaystyle\sum_{m=1}^{n} x_m+y_m = 1+\frac{\sqrt[3]{9}}{3}\approx 1.69

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...