⎩ ⎨ ⎧ x 2 + y 2 + x y + 2 y + x = 2 2 x 2 − y 2 − 2 y − 2 = 0 If ( x , y ) = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) are all real pairs satisfying the system above, find ∣ ∣ ∣ ∣ ∣ m = 1 ∑ n x m + y m ∣ ∣ ∣ ∣ ∣ to 2 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution, but the dividend of y is 4 − x − 3 x 2 , not 4 − x − x 2
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎨ ⎧ x 2 + y 2 + x y + 2 y + x = 2 . . . ( i ) 2 x 2 − y 2 − 2 y − 2 = 0 . . . ( i i ) Add ( i ) and ( i i ) to get y = x 4 − x − 3 x 2 , or, x ( 4 + 3 x ) ( 1 − x ) . . . . ( i i i ) .
Put this value of y in ( i i ) to get, 7 x 4 − 2 3 x 2 + 1 6 = 0 ⟹ x 2 = 1 , 7 1 6 ⟹ x = ± 1 , ± 7 4 7 .
Put the obtained value of x in ( i i i ) to get corresponding value of y . Doing so gives following pair of solutions :- ( 1 , 0 ) , ( − 1 , − 2 ) , ( 7 4 7 , 7 − 5 7 − 7 ) , ( 7 − 4 7 , 7 5 7 − 7 ) . So, ∣ ∣ ∣ ∣ ∣ m = 1 ∑ n x m + y m ∣ ∣ ∣ ∣ ∣ = ( 1 − 1 + 7 4 7 − 7 4 7 ) + ( 0 − 2 − 7 5 7 + 7 + 7 5 7 − 7 ) ⟹ ∣ − 4 ∣ ⟹ 4 .