System of Diff Eq's

Calculus Level 4

A ˙ = B B ˙ = A A ( 0 ) = 1.25 B ( 0 ) = 1 \dot{A} = -B \\ \dot{B} = -A \\ A(0) = 1.25 \\ B(0) = 1

When B = 0.01 B = 0.01 , what is the value of A A ?

Note: The "dot" notation denotes the time derivative


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
Jun 24, 2019

Note that A ˙ + B ˙ = ( A + B ) A ˙ B ˙ = A B \dot{A} + \dot{B} \; = \; -(A+B) \hspace{2cm} \dot{A} - \dot{B} \; = \; A - B so that A + B = 9 4 e t A B = 1 4 e t A + B \; = \; \tfrac94e^{-t} \hspace{2cm} A - B \;= \; \tfrac14e^t Thus A 2 B 2 = 9 16 A^2 - B^2 \; = \; \tfrac{9}{16} while A = 1 8 ( 9 e t + e t ) > 0 A = \tfrac18\big(9e^{-t} + e^t\big) > 0 , so that A = B 2 + 9 16 A \; = \; \sqrt{B^2 + \tfrac{9}{16}} When B = 0.01 B =0.01 we obtain A = 0.7500666637 A = \boxed{0.7500666637}

Of course, you could directly differentiate A 2 B 2 A^2-B^2 and see that it's constant, but that wouldn't provide the nice explanation that you did.

Chris Lewis - 1 year, 11 months ago
Arjen Vreugdenhil
Jun 26, 2019

Note that d d t A 2 = 2 A A ˙ = 2 A B ; d d t B 2 = 2 B B ˙ = 2 B A \frac{d}{dt}A^2 = 2A\dot A = -2AB;\ \ \ \ \ \ \frac{d}{dt}B^2 = 2B\dot B = -2BA are equal, so the squares of these functions decrease by the same amount.

Since B 2 B^2 decreases by 1 2 0.0 1 2 = 0.9999 1^2 - 0.01^2 = 0.9999 , A 2 A^2 decreases by the same amount, becoming A 2 = 1.2 5 2 0.9999 = 0.5626 , A^2 = 1.25^2 - 0.9999 = 0.5626, so that A = 0.5626 0.750 A = \sqrt{0.5626} \approx 0.750 .

That's pretty neat, thanks

Steven Chase - 1 year, 11 months ago

Woah!!! This was a nice approach, Sir!!!

Aaghaz Mahajan - 1 year, 11 months ago
Aaghaz Mahajan
Jun 24, 2019

By differentiating the first equation, and using the second equation, we get

A = B = A A''=-B'=A

Now, this simple equation can be solved to get

A ( x ) = C 1 e x + C 2 e x A\left(x\right)=C_1e^x+C_2e^{-x}

Here, C 1 , C 2 \displaystyle C_1\ ,\ C_2 are arbitrary constants. Putting this function in the first equation, we get

B ( x ) = C 2 e x C 1 e x B\left(x\right)=C_2e^{-x}-C_1e^x

Now, using the initial values, the constants can be determined easily and they come out to be C 1 = 0.125 \displaystyle C_1=0.125 and C 2 = 1.125 \displaystyle C_2=1.125

{ { aa , bb } } = { a , b } /. DSolve [ { a ( t ) = b ( t ) , b ( t ) = a ( t ) , a ( 0 ) = 1.25 , b ( 0 ) = 1. } , { a , b } , t ] \{\{\text{aa},\,\text{bb}\}\}=\{a,b\}\text{/.}\, \text{DSolve}\left[\left\{a'(t)=b(t),b'(t)=a(t),a(0)=1.25,b(0)=1.\right\},\{a,b\},t\right]

aa : { t } 1 8 e t ( 9 e 2 t + 1 ) \text{aa}: \{t\}\to \frac{1}{8} e^{-t} \left(9 e^{2 t}+1\right)

bb : { t } 1 8 e t ( 9 e 2 t 1 ) \text{bb}: \{t\}\to \frac{1}{8} e^{-t} \left(9 e^{2 t}-1\right)

There are two families of solutions for bb ( t ) = 1 100 \text{bb}(t)=\frac{1}{100} :

{ t ConditionalExpression [ 2 i π c 1 + i π + log ( 1 225 ( 5626 1 ) ) , c 1 Z ] } \left\{t\to \text{ConditionalExpression}\left[2 i \pi c_1+i \pi +\log \left(\frac{1}{225} \left(\sqrt{5626}-1\right)\right),c_1\in \mathbb{Z}\right]\right\} giving 225 e 2 i π c 1 i π ( 1 + 9 e 2 ( 2 i π c 1 + i π + log ( 1 225 ( 5626 1 ) ) ) ) 8 ( 5626 1 ) \frac{225 e^{-2 i \pi c_1-i \pi } \left(1+9 e^{2 \left(2 i \pi c_1+i \pi +\log \left(\frac{1}{225} \left(\sqrt{5626}-1\right)\right)\right)}\right)}{8 \left(\sqrt{5626}-1\right)}

{ t ConditionalExpression [ log ( 1 225 ( 5626 + 1 ) ) + 2 i π c 1 , c 1 Z ] } \left\{t\to \text{ConditionalExpression}\left[\log \left(\frac{1}{225} \left(\sqrt{5626}+1\right)\right)+2 i \pi c_1,c_1\in \mathbb{Z}\right]\right\} giving 225 e 2 i π c 1 ( 1 + 9 e 2 ( log ( 1 225 ( 5626 + 1 ) ) + 2 i π c 1 ) ) 8 ( 5626 + 1 ) \frac{225 e^{-2 i \pi c_1} \left(1+9 e^{2 \left(\log \left(\frac{1}{225} \left(\sqrt{5626}+1\right)\right)+2 i \pi c_1\right)}\right)}{8 \left(\sqrt{5626}+1\right)}

For c 1 0 c_1\to 0 , the expressons, within rounding error, evaluate to 0.750066663703967 -0.750066663703967 and 0.750066663703967 0.750066663703967 , respectively.

I used the real time solution to respond to the problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...