System of Differential Equations !!

Level 2

Let

f = 2 f 2 g h + 1 g h , f ( 0 ) = 1 f' = 2f^2gh + \dfrac{1}{gh}, \:\ f(0) = 1

g = f g 2 h + 4 f h , g ( 0 ) = 1 g' = fg^2h + \dfrac{4}{fh}, \:\ g(0) = 1

h = 3 f g h 2 + 1 f g , h ( 0 ) = 1 h' = 3fgh^2 + \dfrac{1}{fg}, \:\ h(0) = 1 .

Find f ( π 12 ) + g ( π 4 ) + h ( π 6 ) f(\dfrac{\pi}{12}) + g(\dfrac{\pi}{4}) + h(\dfrac{\pi}{6}) .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 4, 2020

( 1 ) g h ( f = 2 f 2 g h + 1 g h ) (1) \:\ gh * (f' = 2f^2gh + \dfrac{1}{gh})

( 2 ) f h ( g = f g 2 h + 4 f h ) (2) \:\ fh * (g' = fg^2h + \dfrac{4}{fh})

( 3 ) f g ( h = 3 f g h 2 + 1 f g ) (3) \:\ fg * (h' = 3fgh^2 + \dfrac{1}{fg})

( f g h ) = f ( g h ) + ( g h ) f = f ( g h + h g ) + f g h = f g h + f g h + f g h (fgh)' = f(gh)' + (gh)f' = f(gh' + hg') + f'gh = f'gh + fg'h + fgh' \implies

( f g h ) = 6 ( ( f g h ) 2 + 1 ) (fgh)' = 6((fgh)^2 + 1)

Let y = f g h y = 6 ( y 2 + 1 ) y y 2 + 1 d y = 6 d x y = fgh \implies y' = 6(y^2 + 1) \implies \displaystyle\int \dfrac{y'}{y^2 + 1} dy = 6\displaystyle\int dx

arctan ( y ) = 6 x + C \implies \arctan(y) = 6x + C and f ( 0 ) g ( 0 ) h ( 0 ) = 1 = tan ( C ) C = π 4 f(0)g(0)h(0) = 1 = \tan(C) \implies C = \dfrac{\pi}{4} \implies

f g h = tan ( 6 x + π 4 ) fgh = \tan(6x + \dfrac{\pi}{4})

Dividing ( 1 ) (1) by f f f = 2 f g h + 1 f g h = 2 tan ( 6 x + π 4 ) + cot ( 6 x + π 4 ) f \implies \dfrac{f'}{f} = 2fgh + \dfrac{1}{fgh} = 2\tan(6x + \dfrac{\pi}{4}) + \cot(6x + \dfrac{\pi}{4})

ln ( f ) = 2 6 tan ( 6 x + π 4 ) + 1 6 cot ( 6 x + π 4 ) + C = \implies \ln(f) = \dfrac{2}{6}\displaystyle\int \tan(6x + \dfrac{\pi}{4}) + \dfrac{1}{6} \displaystyle\int \cot(6x + \dfrac{\pi}{4}) + C^{*} =

ln ( K ( sin ( 6 x + π 4 ) cos 2 ( 6 x + π 4 ) ) 1 6 ) \ln(K(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^2(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}) \implies

f ( x ) = K ( sin ( 6 x + π 4 ) cos 2 ( 6 x + π 4 ) ) 1 6 f(x) = K(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^2(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}

f ( 0 ) = 1 1 = K ( 2 ) 1 6 K = ( 1 2 ) 1 6 f(0) = 1 \implies 1 = K(\sqrt{2})^{\frac{1}{6}} \implies K = (\dfrac{1}{\sqrt{2}})^{\frac{1}{6}}

f ( x ) = ( 1 2 ( sin ( 6 x + π 4 ) cos 2 ( 6 x + π 4 ) ) ) 1 6 f(x) = (\dfrac{1}{\sqrt{2}}(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^2(6x + \dfrac{\pi}{4})}))^{\frac{1}{6}} and f ( π 12 ) = 1 \boxed{f(\dfrac{\pi}{12}) = 1}

Similarly for g ( x ) g(x) and h ( x ) h(x) :

Dividing ( 2 ) (2) by g g g = f g h + 4 f g h = tan ( 6 x + π 4 ) + 4 cot ( 6 x + π 4 ) g \implies \dfrac{g'}{g} = fgh + \dfrac{4}{fgh} = \tan(6x + \dfrac{\pi}{4}) + 4\cot(6x + \dfrac{\pi}{4}) \implies

g ( x ) = K ( sin 4 ( 6 x + π 4 ) cos ( 6 x + π 4 ) ) 1 6 g(x) = K(\dfrac{\sin^4(6x + \dfrac{\pi}{4})}{\cos(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}

and g ( 0 ) = 1 K = ( 2 3 2 ) 1 6 g(0) = 1 \implies K = (2^{\frac{3}{2}})^{\frac{1}{6}} \implies

g ( x ) = ( 2 3 2 ( sin 4 ( 6 x + π 4 ) cos ( 6 x + π 4 ) ) ) 1 6 g(x) = (2^{\frac{3}{2}}(\dfrac{\sin^4(6x + \dfrac{\pi}{4})}{\cos(6x + \dfrac{\pi}{4})}))^{\frac{1}{6}} and g ( π 4 ) = 1 \boxed{g(\dfrac{\pi}{4}) = 1}

Dividing ( 3 ) (3) by h h h = 3 f g h + 1 f g h = 3 tan ( 6 x + π 4 ) + cot ( 6 x + π 4 ) h \implies \dfrac{h'}{h} = 3fgh + \dfrac{1}{fgh} = 3\tan(6x + \dfrac{\pi}{4}) + \cot(6x + \dfrac{\pi}{4}) \implies

h ( x ) = K ( sin ( 6 x + π 4 ) cos 3 ( 6 x + π 4 ) ) 1 6 h(x) = K(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^3(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}

and h ( 0 ) = 1 K = ( 1 2 ) 1 6 h(0) = 1 \implies K = (\dfrac{1}{2})^{\frac{1}{6}} \implies

h ( x ) = ( 1 2 ( sin ( 6 x + π 4 ) cos 3 ( 6 x + π 4 ) ) ) 1 6 h(x) = (\dfrac{1}{2}(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^3(6x + \dfrac{\pi}{4})}))^{\frac{1}{6}} and h ( π 6 ) = 1 \boxed{h(\dfrac{\pi}{6}) = 1}

f ( π 12 ) + g ( π 4 ) + h ( π 6 ) = 3 \implies f(\dfrac{\pi}{12}) + g(\dfrac{\pi}{4}) + h(\dfrac{\pi}{6}) = \boxed{3}

So darn close on this nonlinear ODE system.....I kept coming up with h(pi/6) = -1 for a grand total of 1 instead. Really good problem nonetheless, Rocco.....hope to see another similar ODE system like this?!

tom engelsman - 8 months ago

Very nice problem.

Karan Chatrath - 6 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...