System Of Differential Equations!

Calculus Level 4

Let

f = 2 f 2 g h + 1 g h , f ( 0 ) = 1 f' = 2f^2gh + \dfrac{1}{gh}, \:\ f(0) = 1

g = f g 2 h + 4 f h , g ( 0 ) = 1 g' = fg^2h + \dfrac{4}{fh}, \:\ g(0) = 1

h = 3 f g h 2 + 1 f g , h ( 0 ) = 1 h' = 3fgh^2 + \dfrac{1}{fg}, \:\ h(0) = 1 .

Find f ( π 12 ) + g ( π 4 ) + h ( π 6 ) f\left(\dfrac{\pi}{12}\right) + g\left(\dfrac{\pi}{4}\right) + h\left(\dfrac{\pi}{6}\right) .

I'm reposting a problem I did in the past.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 13, 2021

( 1 ) g h ( f = 2 f 2 g h + 1 g h ) (1) \:\ gh * (f' = 2f^2gh + \dfrac{1}{gh})

( 2 ) f h ( g = f g 2 h + 4 f h ) (2) \:\ fh * (g' = fg^2h + \dfrac{4}{fh})

( 3 ) f g ( h = 3 f g h 2 + 1 f g ) (3) \:\ fg * (h' = 3fgh^2 + \dfrac{1}{fg})

( f g h ) = f ( g h ) + ( g h ) f = f ( g h + h g ) + f g h = f g h + f g h + f g h (fgh)' = f(gh)' + (gh)f' = f(gh' + hg') + f'gh = f'gh + fg'h + fgh' \implies

( f g h ) = 6 ( ( f g h ) 2 + 1 ) (fgh)' = 6((fgh)^2 + 1)

Let y = f g h y = 6 ( y 2 + 1 ) y y 2 + 1 d y = 6 d x y = fgh \implies y' = 6(y^2 + 1) \implies \displaystyle\int \dfrac{y'}{y^2 + 1} dy = 6\displaystyle\int dx

arctan ( y ) = 6 x + C \implies \arctan(y) = 6x + C and f ( 0 ) g ( 0 ) h ( 0 ) = 1 = tan ( C ) C = π 4 f(0)g(0)h(0) = 1 = \tan(C) \implies C = \dfrac{\pi}{4} \implies

f g h = tan ( 6 x + π 4 ) fgh = \tan(6x + \dfrac{\pi}{4})

Dividing ( 1 ) (1) by f f f = 2 f g h + 1 f g h = 2 tan ( 6 x + π 4 ) + cot ( 6 x + π 4 ) f \implies \dfrac{f'}{f} = 2fgh + \dfrac{1}{fgh} = 2\tan(6x + \dfrac{\pi}{4}) + \cot(6x + \dfrac{\pi}{4})

ln ( f ) = 2 6 tan ( 6 x + π 4 ) + 1 6 cot ( 6 x + π 4 ) + C = \implies \ln(f) = \dfrac{2}{6}\displaystyle\int \tan(6x + \dfrac{\pi}{4}) + \dfrac{1}{6} \displaystyle\int \cot(6x + \dfrac{\pi}{4}) + C^{*} =

ln ( K ( sin ( 6 x + π 4 ) cos 2 ( 6 x + π 4 ) ) 1 6 ) \ln(K(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^2(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}) \implies

f ( x ) = K ( sin ( 6 x + π 4 ) cos 2 ( 6 x + π 4 ) ) 1 6 f(x) = K(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^2(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}

f ( 0 ) = 1 1 = K ( 2 ) 1 6 K = ( 1 2 ) 1 6 f(0) = 1 \implies 1 = K(\sqrt{2})^{\frac{1}{6}} \implies K = (\dfrac{1}{\sqrt{2}})^{\frac{1}{6}}

f ( x ) = ( 1 2 ( sin ( 6 x + π 4 ) cos 2 ( 6 x + π 4 ) ) ) 1 6 f(x) = (\dfrac{1}{\sqrt{2}}(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^2(6x + \dfrac{\pi}{4})}))^{\frac{1}{6}} and f ( π 12 ) = 1 \boxed{f(\dfrac{\pi}{12}) = 1}

Similarly for g ( x ) g(x) and h ( x ) h(x) :

Dividing ( 2 ) (2) by g g g = f g h + 4 f g h = tan ( 6 x + π 4 ) + 4 cot ( 6 x + π 4 ) g \implies \dfrac{g'}{g} = fgh + \dfrac{4}{fgh} = \tan(6x + \dfrac{\pi}{4}) + 4\cot(6x + \dfrac{\pi}{4}) \implies

g ( x ) = K ( sin 4 ( 6 x + π 4 ) cos ( 6 x + π 4 ) ) 1 6 g(x) = K(\dfrac{\sin^4(6x + \dfrac{\pi}{4})}{\cos(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}

and g ( 0 ) = 1 K = ( 2 3 2 ) 1 6 g(0) = 1 \implies K = (2^{\frac{3}{2}})^{\frac{1}{6}} \implies

g ( x ) = ( 2 3 2 ( sin 4 ( 6 x + π 4 ) cos ( 6 x + π 4 ) ) ) 1 6 g(x) = (2^{\frac{3}{2}}(\dfrac{\sin^4(6x + \dfrac{\pi}{4})}{\cos(6x + \dfrac{\pi}{4})}))^{\frac{1}{6}} and g ( π 4 ) = 1 \boxed{g(\dfrac{\pi}{4}) = 1}

Dividing ( 3 ) (3) by h h h = 3 f g h + 1 f g h = 3 tan ( 6 x + π 4 ) + cot ( 6 x + π 4 ) h \implies \dfrac{h'}{h} = 3fgh + \dfrac{1}{fgh} = 3\tan(6x + \dfrac{\pi}{4}) + \cot(6x + \dfrac{\pi}{4}) \implies

h ( x ) = K ( sin ( 6 x + π 4 ) cos 3 ( 6 x + π 4 ) ) 1 6 h(x) = K(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^3(6x + \dfrac{\pi}{4})})^{\frac{1}{6}}

and h ( 0 ) = 1 K = ( 1 2 ) 1 6 h(0) = 1 \implies K = (\dfrac{1}{2})^{\frac{1}{6}} \implies

h ( x ) = ( 1 2 ( sin ( 6 x + π 4 ) cos 3 ( 6 x + π 4 ) ) ) 1 6 h(x) = (\dfrac{1}{2}(\dfrac{\sin(6x + \dfrac{\pi}{4})}{\cos^3(6x + \dfrac{\pi}{4})}))^{\frac{1}{6}} and h ( π 6 ) = 1 \boxed{h(\dfrac{\pi}{6}) = 1}

f ( π 12 ) + g ( π 4 ) + h ( π 6 ) = 3 \implies f(\dfrac{\pi}{12}) + g(\dfrac{\pi}{4}) + h(\dfrac{\pi}{6}) = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...