Not Three Egyptian Fractions

Algebra Level 2

1 x + 1 y = 1 3 1 x + 1 z = 1 5 1 y + 1 z = 1 7 \begin{aligned} \frac{1}{x} + \frac{1}{y} &=& \frac{1}{3}\\ \frac{1}{x} + \frac{1}{z} &=& \frac{1}{5}\\ \frac{1}{y} + \frac{1}{z} &=& \frac{1}{7} \\ \end{aligned}

Given the system of equations above, what is the value of z y \frac{z}{y} ?


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Afreen Sheikh
Mar 7, 2015

1 x + 1 y ( 1 x + 1 z ) = 1 3 1 5 \frac{1}{x}+\frac{1}{y} - (\frac{1}{x}+\frac{1}{z}) = \frac{1}{3} - \frac{1}{5}

z y z y = 2 15 \frac{z-y}{zy} = \frac{2}{15}

similarly z + y z y = 1 7 \frac{z+y}{zy} = \frac{1}{7}

by dividing z y z + y = 14 15 \frac{z-y}{z+y} = \frac{14}{15}

now by Componendo and Dividendo ,

z y + ( z + y ) z + y ( z y ) = 14 + 15 15 14 \frac{z-y+(z+y)}{z+y-(z-y)} = \frac{14+15}{15-14}

2 z 2 y = 29 1 \frac{2z}{2y} = \frac{29}{1}

hence z y = 29 \frac{z}{y} = 29

very nice using componendo n dividendo loved it

Shashank Rustagi - 6 years, 3 months ago

Log in to reply

thanx....It was the simplest of all

Afreen Sheikh - 6 years, 2 months ago

Loved the simplicity of your solution! But how did you get from 2/15 and 1/7 to 14/15? Is that a specific algebraic rule?

Jacob Estabrook - 4 years, 9 months ago

Log in to reply

That's the third equation in question (1/y)+(1/z)=(1/7)

Afreen Sheikh - 4 years, 8 months ago

"by componendo and dividendo rule" the best part of the best solution

Carlos Céspedes - 5 years, 9 months ago

This solution was so dope ;) nice way to solve it!

Fon Fahmek - 5 years, 3 months ago
Chew-Seong Cheong
Feb 23, 2015

It is given that:

{ 1 x + 1 y = 1 3 . . . ( 1 ) 1 x + 1 z = 1 5 . . . ( 2 ) 1 y + 1 z = 1 7 . . . ( 3 ) \begin{cases} \dfrac {1}{x} + \dfrac {1}{y} = \dfrac {1}{3} & ...(1) \\ \dfrac {1}{x} + \dfrac {1}{z} = \dfrac {1}{5} & ...(2) \\ \dfrac {1}{y} + \dfrac {1}{z} = \dfrac {1}{7} & ...(3) \end{cases}

E q . 1 + E q . 2 E q . 3 : 2 x = 1 3 + 1 5 1 7 = 41 105 1 x = 41 210 . . . ( 3 a ) E q . 3 a E q . 1 : 41 210 + 1 y = 1 3 1 y = 29 210 . . . ( 1 a ) E q . 3 a E q . 2 : 41 210 + 1 z = 1 5 1 z = 1 210 . . . ( 2 a ) E q . 1 a E q . 2 a : z y = 29 \begin{array} {llll} Eq.1+Eq.2-Eq.3: & \dfrac {2}{x} = \dfrac {1}{3} + \dfrac {1}{5} - \dfrac {1}{7} = \dfrac {41} {105} & \Rightarrow \dfrac {1}{x} = \dfrac {41} {210} & ...(3a) \\ Eq.3a \rightarrow Eq.1: & \dfrac {41}{210} + \dfrac {1}{y} = \dfrac {1}{3} & \Rightarrow \dfrac {1}{y} = \dfrac {29}{210} & ...(1a) \\ Eq.3a \rightarrow Eq.2: & \dfrac {41}{210} + \dfrac {1}{z} = \dfrac {1}{5} & \Rightarrow \dfrac {1}{z} = \dfrac {1}{210} & ...(2a) \\ \dfrac {Eq.1a}{Eq.2a}: & \dfrac {z}{y} = \boxed{29} && \end{array}

Maybe we can lessen our calculation by not calculating for x x :)

Vaibhav Prasad - 6 years, 3 months ago

Log in to reply

yupp...we dont need much calculation in it.

Afreen Sheikh - 6 years, 3 months ago

Did it like that , but without calculating the x x

Ahmed Obaiedallah - 5 years, 10 months ago

Even did the same!!

Anik Mandal - 6 years, 3 months ago

{ 1 x + 1 y = 1 3 . . . ( 1 ) 1 x + 1 z = 1 5 . . . ( 2 ) 1 y + 1 z = 1 7 . . . ( 3 ) \begin{cases} \dfrac {1}{x} + \dfrac {1}{y} = \dfrac {1}{3} & ...(1) \\ \dfrac {1}{x} + \dfrac {1}{z} = \dfrac {1}{5} & ...(2) \\ \dfrac {1}{y} + \dfrac {1}{z} = \dfrac {1}{7} & ...(3) \end{cases}\\~~\\ { ( 2 ) ( 1 ) 1 y 1 z = 2 15 . . . . ( 4 ) S u b t r a c t ( 4 ) f r o m ( 3 ) 2 z = 1 105 . . ( 5 ) A d d ( 3 ) a n d ( 4 ) 2 y = 29 105 . . . ( 6 ) z y = ( 6 ) ( 5 ) = 29 \\~~\\\begin{cases} (2)~-~(1)~~\dfrac {1}{y} -\dfrac {1}{z} = \dfrac {2}{15} ....(4)\\Subtract~(4)~from~(3)~~\dfrac {2}{z}=\dfrac {1}{105}..(5)\\Add~(3)~and~(4)~~\dfrac {2}{y}=\dfrac {29}{105}...(6)\\ \end{cases} \\\dfrac {z}{y}=\dfrac {(6)}{(5)}= \color{#D61F06} { \Large 29}

this one is superb !

Eugenza Ryn - 4 years, 11 months ago
Peter Orton
Feb 23, 2015

Add the three equations together to get 2 ( 1 x + 1 y + 1 z ) = ( 1 / 3 ) + ( 1 / 5 ) + ( 1 / 7 ) 2( \frac{1}{x} + \frac{1}{y} + \frac{1}{z})=(1/3)+(1/5) + (1/7) (equation 1 1 ).Then subtract the 2 ( 1 x + 1 y ) = ( 2 / 3 ) 2( \frac{1}{x} + \frac{1}{y}) = (2/3) from both sides to get 2 z = ( 71 / 105 ) ( 70 / 105 ) = ( 1 / 105 ) \frac{2}{z} = (71/105) - (70/105) = (1/105) , so z = 210 z = 210 . Subtract 2 ( 1 x + 1 z ) = ( 2 / 5 ) 2( \frac{1}{x} + \frac{1}{z} )= (2/5) from both side of equation 1 1 yields 2 y = ( 71 / 105 ) ( 42 / 105 ) = ( 29 / 105 ) \frac{2}{y} = (71/105) - (42/105) = (29/105) , so y = ( 210 / 29 ) y=(210/29) . It follows that z y = 210 210 / 29 = 29 \frac{z}{y} = \frac{210}{210/29} = 29 .

Elizandro Max
Jul 10, 2015

Being (1), (2) and (3) the equations, making (1)-(2)+(3) yields

2 y = 1 3 1 5 + 1 7 = 29 105 \dfrac{2}{y}=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}=\dfrac{29}{105}

and making (1)+(2)-(3) we have

2 z = 1 3 + 1 5 1 7 = 1 105 \dfrac{2}{z}=\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{1}{105}

Divinding these expressions by one another, we have

2 / y 2 / z = z y = 29 / 105 1 / 105 = 29 \dfrac{2/y}{2/z}=\dfrac{z}{y}=\dfrac{29/105}{1/105}=29

Moderator note:

Good observation that allows us to eliminate the variables in a smart way!

Farouk Yasser
Feb 25, 2015

Equation (1) + (3) - (2) Gives you:

2/y = 29/105

Therefore y = 210/29

Substitute it Equation (3) to give z = 210

z/y = 210/(210/29) = 29

let 1/x = a, 1/y = b, 1/z = c

a + b = 1/3

a + c = 1/5

b + c = 1/7

from equation 1,

b = 1/3 - a

from equation 2,

c = 1/5 - a

substitute these in equation 3

1/3 - a + 1/5 - a = 1/7

-2a = -41/105

a = 41/210

b = 1/3 - 41/210 = 29/210

c = 1/5 - 41/210 = 1/210

Now, solve for x,y and z

1/x = 41/210

x = 210/41

1/y = 29/210

y = 210/29

1/z = 1/210

z = 210

z/y = 210/(210/29)

z/y = (210/1) x (29/210) = 29

Rajat Patil
Jan 17, 2016

Even we can solve by putting 1/x=a 1/y=b 1/z=c Then solve simultaneously for a,b,c And then find b/c!!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...