System of Equations

Algebra Level 5

{ a 2 + a b + b 2 = 25 b 2 + b c + c 2 = 49 c 2 + c a + a 2 = 64 \begin{cases} { a }^{ 2 }+ab+{ b }^{ 2 }=25\\ { b }^{ 2 }+bc+{ c }^{ 2 }=49\\ { c }^{ 2 }+ca+{ a }^{ 2 }=64 \end{cases}

Let a , b a,b and c c be positive real numbers satisfying the system of equations above. Find ( a + b + c ) 2 (a+b+c)^2 .


This problem is from the Singapore Mathematical Olympiad Junior Round 1 (2011). Full credit is given to the organisers for preparing and deriving the solution to this problem.


The answer is 129.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

K. J. W.
Mar 6, 2016

S o l u t i o n b y t h e o r g a n i s e r s o f S M O ( J u n i o r ) 2011 : C o n s i d e r A B C w h e r e A B = 5 , B C = 7 a n d A C = 8. L e t P b e t h e p o i n t i n A B C s u c h t h a t A P B = B P C = C P A = 120 ° . T h e n , b y C o s i n e R u l e , w e c a n l e t A P = a , B P = b a n d C P = c . T h e a r e a o f t h e t r i a n g l e i s ( 10 ) ( 5 ) ( 3 ) ( 2 ) = 10 3 . H e n c e , b y s i n e f o r m u l a f o r a r e a o f a t r i a n g l e , 3 4 ( a b + b c + c a ) = 10 3 . T h i s i m p l i e s t h a t a b + b c + c a = 40. S u m m i n g u p t h e 3 g i v e n e q u a t i o n s , w e g e t 2 a 2 + 2 b 2 + 2 c 2 + a b + b c + c a = 138. H e n c e 2 ( a + b + c ) 2 = 138 + 3 ( 40 ) = 258. S o ( a + b + c ) 2 = 129 . Solution\quad by\quad the\quad organisers\quad of\quad SMO\quad (Junior)\quad 2011:\\ Consider\quad \triangle ABC\quad where\quad AB=5,\quad BC=7\quad and\quad AC=8.\\ Let\quad P\quad be\quad the\quad point\quad in\quad \triangle ABC\quad such\quad that\quad \angle APB=\angle BPC=\angle CPA=120°.\\ Then,\quad by\quad Cosine\quad Rule,\quad we\quad can\quad let\quad AP=a,\quad BP=b\quad and\quad CP=c.\\ The\quad area\quad of\quad the\quad triangle\quad is\quad \sqrt { (10)(5)(3)(2) } =10\sqrt { 3 } .\\ Hence,\quad by\quad sine\quad formula\quad for\quad area\quad of\quad a\quad triangle,\quad \frac { \sqrt { 3 } }{ 4 } (ab+bc+ca)=10\sqrt { 3 } .\\ This\quad implies\quad that\quad ab+bc+ca=40.\\ Summing\quad up\quad the\quad 3\quad given\quad equations,\quad we\quad get\quad 2{ a }^{ 2 }+2{ b }^{ 2 }+2{ c }^{ 2 }+ab+bc+ca=138.\\ Hence\quad 2{ (a+b+c) }^{ 2 }=138+3(40)=258.\quad So\quad { (a+b+c) }^{ 2 }=\boxed { 129 } .\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...