System of equations

Algebra Level 3

{ 2 a + b + c + d + e = 6 a + 2 b + c + d + e = 12 a + b + 2 c + d + e = 24 a + b + c + 2 d + e = 48 a + b + c + d + 2 e = 96 \large \begin{cases} 2a+b+c+d+e=6 \\ a+2b+c+d+e=12 \\ a+b+2c+d+e=24 \\ a+b+c+2d+e=48 \\ a+b+c+d+2e=96 \end{cases}

Solve the system of the equations above. Give your answer as a b + c d + e a-b+c-d+e .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given { 2 a + b + c + d + e = 6 . . . ( 1 ) a + 2 b + c + d + e = 12 . . . ( 2 ) a + b + 2 c + d + e = 24 . . . ( 3 ) a + b + c + 2 d + e = 48 . . . ( 4 ) a + b + c + d + 2 e = 96 . . . ( 5 ) \begin{cases} 2a + b + c + d + e = 6 & ...(1) \\ a + 2b + c + d + e = 12 & ...(2) \\ a + b + 2c + d + e = 24 & ...(3) \\ a + b + c + 2d + e = 48 & ...(4) \\ a + b + c + d + 2e = 96 & ...(5) \end{cases}

( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) + ( 5 ) : 6 a + 6 b + 6 c + 6 d + 6 e = 186 a + b + c + d + e = 31 . . . ( 6 ) ( 1 ) ( 2 ) + ( 3 ) ( 4 ) + ( 5 ) : 2 a + 2 c + 2 e = 66 . . . ( 7 ) ( 7 ) ( 6 ) : a b + c d + e = 35 \begin{array} {lrll} (1)+(2)+(3)+(4)+(5): & 6a+6b+6c+6d+6e & =186 \\ & \implies a+b+c+d+e & = 31 &...(6) \\ (1)-(2)+(3)-(4)+(5): & 2a+2c+2e & =66 &...(7) \\ (7)-(6): & \implies a-b+c-d+e & = \boxed{35} \end{array}

Adding the five equations we get,

6 a + 6 b + 6 c + 6 d + 6 e = 186 6a+6b+6c+6d+6e=186

a + b + c + d + e = 31 a+b+c+d+e=31 \implies 6 \boxed{6}

1 6 \boxed{1}-\boxed{6}

a = 6 31 = 25 a=6-31=-25

2 6 \boxed{2}-\boxed{6}

b = 12 31 = 19 b=12-31=-19

3 6 \boxed{3}-\boxed{6}

c = 24 31 = 7 c=24-31=-7

4 6 \boxed{4}-\boxed{6}

d = 48 31 = 17 d=48-31=17

5 6 \boxed{5}-\boxed{6}

e = 96 31 = 65 e=96-31=65

Finally,

a b + c d + e = 25 ( 19 ) + ( 7 ) 17 + 65 = a-b+c-d+e=-25-(-19)+(-7)-17+65= 35 \boxed{35}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...