System of equations..

Algebra Level 3

{ x + y x y + x y x + y = 5 2 x 2 + y 2 = 90 \large \begin{cases} \dfrac{x+y}{x-y} + \dfrac{x-y}{x+y} = \dfrac 52 \\ x^2+y^2 = 90 \\ \end{cases}

Find the minimum value of y x y-x


The answer is -12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 18, 2018

From equation ( 1 ) : (1):

x + y x y + x y x + y = 5 2 ( x + y ) 2 + ( x y ) 2 x 2 y 2 = 5 2 2 ( x 2 + y 2 ) x 2 y 2 = 5 2 Note ( 2 ) : x 2 + y 2 = 90 2 ( 90 ) x 2 y 2 = 5 2 x 2 y 2 = 72 . . . ( 1 a ) \begin{aligned} \frac {x+y}{x-y} + \frac {x-y}{x+y} & = \frac 52 \\ \frac {(x+y)^2+(x-y)^2}{x^2-y^2} & = \frac 52 \\ \frac {2({\color{#3D99F6}x^2+y^2})}{x^2-y^2} & = \frac 52 & \small \color{#3D99F6} \text{Note }(2): \ x^2+y^2 = 90 \\ \frac {2({\color{#3D99F6}90})}{x^2-y^2} & = \frac 52 \\ \implies x^2-y^2 & = 72 & ...(1a) \end{aligned}

Then { ( 1 a ) + ( 2 ) : 2 x 2 = 162 x 2 = 81 x = ± 9 ( 1 ) : 81 + y 2 = 90 y 2 = 9 y = ± 3 \begin{cases} (1a) + (2): & 2x^2 = 162\ & \implies x^2 = 81 & \implies x = \pm 9 \\ (1): & 81+y^2 = 90 & \implies y^2 = 9 & \implies y = \pm 3 \end{cases}

Therefore, min ( y x ) = 3 ( + 9 ) = 12 \min (y-x) = -3-(+9) = \boxed{-12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...