System of linear differential equations

Calculus Level 3

If x ( t ) x(t) and y ( t ) y(t) are functions such that y = x = x + y y'=x'=x+y and x ( 0 ) = y ( 0 ) = 1 x(0)=y(0)=1 , then what is the value of ln ( x ( 2 ) y ( 2 ) ) \ln(x(2)y(2)) ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Samir Khan
Jun 15, 2016

In matrix form, this equation is [ x y ] = [ 1 1 1 1 ] A [ x y ] v . \left[\begin{array}{c} x\\ y\end{array}\right]' =\underbrace{\left[\begin{array}{cc} 1&1\\ 1&1\end{array}\right]}_{A}\underbrace{\left[\begin{array}{c} x\\ y\end{array}\right]}_{v}. Now we have e t A = n = 0 1 n ! [ t t t t ] n = I + n = 1 1 n ! [ 2 n 1 t n 2 n 1 t n 2 n 1 t n 2 n 1 t n ] , e^{tA}=\sum_{n=0}^{\infty}\frac{1}{n!} \left[\begin{array}{cc} t&t\\ t&t \end{array}\right]^n=I+\sum_{n=1}^{\infty} \frac{1}{n!}\left[\begin{array}{cc} 2^{n-1}t^n&2^{n-1}t^n\\2^{n-1}t^n&2^{n-1}t^n\end{array}\right], which becomes I + 1 2 [ e 2 t 1 e 2 t 1 e 2 t 1 e 2 t 1 ] = 1 2 [ e 2 t + 1 e 2 t 1 e 2 t 1 e 2 t + 1 ] . I+\frac{1}{2}\left[\begin{array}{cc} e^{2t}-1&e^{2t} -1\\ e^{2t}-1&e^{2t}-1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc} e^{2t}+1&e^{2t} -1\\ e^{2t}-1&e^{2t}+1\end{array}\right]. Our solution is v ( t ) = 1 2 [ e 2 t + 1 e 2 t 1 e 2 t 1 e 2 t + 1 ] [ 1 1 ] , v(t)=\frac{1}{2}\left[\begin{array}{cc} e^{2t}+1&e^{2t} -1\\ e^{2t}-1&e^{2t}+1\end{array}\right]\left[\begin{array}{c} 1\\1 \end{array}\right], and multiplying out gives that x ( t ) = y ( t ) = e 2 t x(t)=y(t)=e^{2t} . Then, x ( 2 ) y ( 2 ) = e 8 x(2)y(2)=e^8 , so the answer is 8.

Archit Tripathi
Sep 3, 2016

Let, x=f(t) ;y=g(t) Given that,f'(t)=g'(t)=f(t)+g(t) which implies. (f'(t)/f(t)+g(t))=1.....(1) (g'(t)/f(t)+g(t))=1 ......(2) and dy/dx=1.(3) Adding (1) and(2) we get (f'(t)+g'(t)/f(t)+g(t)) =2 Integrating both sides w.r.t "t", and using given value we get ln(f(t)+g(t))=2t+ln2 Now,since y=x(using (3)), lnx=lny=2t, ln(xy)=2ln(x)=4t this implies at t=2 ln(xy)=4(2)=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...