If x 3 − 3 x 2 y − 6 x y 2 + 8 y 3 = 2 0 and x 2 + x y − 2 y 2 = 4 , let X be the sum of all possible values of x and Y be the sum of all possible values of y . Determine the value of 5 X + 4 Y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let A = x 3 − 3 x 2 y − 6 x y 2 + 8 y 3 = 2 0 and B = x 2 + x y − 2 y 2 = 4 . Notice how the 2 y 2 and x 2 terms in Equation B divide the 8 y 3 and x 3 terms in Equation A , respectively, with a remainder of 0 . As a result, performing Polynomial Division would be a good idea. Dividing A by B by Long Polynomial Division (or Factoring both equations) yields C = x − 4 y = 5 and substituting this back into equation B yields the sum of the possible values of y as − 2 . 5 by Vieta's formula, so Y = − 2 . 5 . Using equation C , the sum of all possible values of x is 0 , so X = 0 . Thus, 5 X + 4 Y = 0 − 1 0 = − 1 0 which is the final answer.
Problem Loading...
Note Loading...
Set Loading...
Given that
x 3 − 3 x 2 y − 6 x y 2 + 8 y 3 ( x + 2 y ) 3 − 9 x 2 y − 1 8 x y 2 ( x + 2 y ) 3 − 9 x y ( x + 2 y ) ( x + 2 y ) 2 − 9 x y x 2 − 5 x y + 4 y 2 ( x − y ) ( x − 4 y ) x − 4 y ⟹ x = 2 0 = 5 ( x 2 + x y − 2 y 2 ) = 5 ( x − y ) ( x + 2 y ) = 5 ( x − y ) = 5 ( x − y ) = 5 ( x − y ) = 5 = 4 y + 5 Also given that x 2 + x y − 2 y 2 = 4 For x + 2 y = 0 for x − y = 0
Substituting in x 2 + x y − 2 y 2 = 4 :
( 6 y + 5 ) ( 3 y + 5 ) 1 8 y 2 + 4 5 y − 2 1 6 y 2 + 1 5 y − 7 = 4 = 0 = 0
By Vieta's formula , the sum of roots Y = − 6 1 5 = − 2 5 . Then the sum of roots of x , X = 5 + 4 y 1 + 5 + 4 y 2 = 1 0 + 4 Y = 1 0 + 4 ( − 2 5 ) = 0 . And 5 X + 4 Y = 5 ( 0 ) + 4 ( − 2 5 ) = − 1 0 . (Note that x + 2 y = 0 and x − y = 0 .)