System of Polynomial Equations

Algebra Level pending

If x 3 3 x 2 y 6 x y 2 + 8 y 3 = 20 x^3-3x^2y-6xy^2+8y^3=20 and x 2 + x y 2 y 2 = 4 x^2+xy-2y^2=4 , let X X be the sum of all possible values of x x and Y Y be the sum of all possible values of y y . Determine the value of 5 X + 4 Y 5X+4Y .


The answer is -10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 13, 2019

Given that

x 3 3 x 2 y 6 x y 2 + 8 y 3 = 20 Also given that x 2 + x y 2 y 2 = 4 ( x + 2 y ) 3 9 x 2 y 18 x y 2 = 5 ( x 2 + x y 2 y 2 ) ( x + 2 y ) 3 9 x y ( x + 2 y ) = 5 ( x y ) ( x + 2 y ) For x + 2 y 0 ( x + 2 y ) 2 9 x y = 5 ( x y ) x 2 5 x y + 4 y 2 = 5 ( x y ) ( x y ) ( x 4 y ) = 5 ( x y ) for x y 0 x 4 y = 5 x = 4 y + 5 \begin{aligned} x^3-3x^2y-6xy^2 + 8y^3 & = 20 & \small \blue{\text{Also given that }x^2 + xy-2y^2 = 4} \\ (x+2y)^3 - 9x^2y - 18xy^2 & = 5(x^2+xy-2y^2) \\ (x+2y)^3 - 9xy(x+2y) & = 5(x-y)(x+2y) & \small \blue{\text{For }x+2y \ne 0} \\ (x+2y)^2 - 9xy & = 5(x-y) \\ x^2 - 5xy + 4y^2 & = 5(x-y) \\ (x-y)(x-4y) & = 5(x-y) & \small \blue{\text{for }x-y \ne 0} \\ x-4y & = 5 \\ \implies x & = 4y+5 \end{aligned}

Substituting in x 2 + x y 2 y 2 = 4 x^2 + xy - 2y^2 = 4 :

( 6 y + 5 ) ( 3 y + 5 ) = 4 18 y 2 + 45 y 21 = 0 6 y 2 + 15 y 7 = 0 \begin{aligned} (6y+5)(3y+5) & = 4 \\ 18y^2 + 45y - 21 & = 0 \\ 6y^2 + 15y - 7 & = 0 \end{aligned}

By Vieta's formula , the sum of roots Y = 15 6 = 5 2 Y = -\frac {15}6 = - \frac 52 . Then the sum of roots of x x , X = 5 + 4 y 1 + 5 + 4 y 2 = 10 + 4 Y = 10 + 4 ( 5 2 ) = 0 X = 5 + 4y_1 + 5+4y_2 = 10+4Y = 10+4\left(-\frac 52\right) = 0 . And 5 X + 4 Y = 5 ( 0 ) + 4 ( 5 2 ) = 10 5X + 4Y = 5(0) + 4 \left(-\frac 52\right) = \boxed{-10} . (Note that x + 2 y 0 x+2y \ne 0 and x y 0 x-y \ne 0 .)

Yashas Ravi
Oct 12, 2019

Let A = x 3 3 x 2 y 6 x y 2 + 8 y 3 = 20 A=x^3-3x^2y-6xy^2+8y^3=20 and B = x 2 + x y 2 y 2 = 4 B=x^2+xy-2y^2=4 . Notice how the 2 y 2 2y^2 and x 2 x^2 terms in Equation B B divide the 8 y 3 8y^3 and x 3 x^3 terms in Equation A A , respectively, with a remainder of 0 0 . As a result, performing Polynomial Division would be a good idea. Dividing A A by B B by Long Polynomial Division (or Factoring both equations) yields C = x 4 y = 5 C=x-4y=5 and substituting this back into equation B B yields the sum of the possible values of y y as 2.5 -2.5 by Vieta's formula, so Y = 2.5 Y=-2.5 . Using equation C C , the sum of all possible values of x x is 0 0 , so X = 0 X=0 . Thus, 5 X + 4 Y = 0 10 = 10 5X+4Y=0-10=-10 which is the final answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...