T-20 LIMIT ;)

Algebra Level 4

L e t f ( θ ) = 1 t a n 9 θ ( ( 1 + t a n θ ) 10 + ( 2 + t a n θ ) 10 + . . . + ( 20 + t a n θ ) 10 ) 20 t a n θ T h e l e f t h a n d l i m i t o f f ( θ ) a s θ π 2 i s Let\\ f(\theta )=\frac { 1 }{ { tan }^{ 9 }\theta } \left( { \left( 1+{ tan\theta } \right) }^{ 10 }+{ \left( 2+{ tan\theta } \right) }^{ 10 }+\quad ...\quad +{ \left( 20+{ tan\theta } \right) }^{ 10 } \right) \quad \\-20tan\theta \\The\quad left\quad hand\quad limit\quad of\quad f(\theta )\quad as\quad \theta \rightarrow \frac { \pi }{ 2 } \quad is

2200 2000 1900 2100

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

t h e a b o v e e x p r e s s i o n c a n b e w r i t t e n a s = lim θ π 2 ( 1 + t a n θ ) 10 + ( 2 + t a n θ ) 10 . . . ( 20 + t a n θ ) 10 20 t a n 10 θ t a n 9 θ = lim θ π 2 t a n θ [ ( c o t θ + 1 ) 10 + ( 2 c o t θ + 1 ) 10 . . . + ( 20 c o t θ + 1 ) 10 20 ] n o w o n a p p l y i n g b i n o m i a l a p p r o x i a m a t i o n t o e a c h t e r m , w e o b t a i n : = lim θ π 2 t a n θ [ ( 10 c o t θ + 1 ) + ( 2 0 c o t θ + 1 ) . . . + ( 200 c o t θ + 1 ) 20 ] = lim θ π 2 t a n θ [ 10 c o t θ + 20 c o t θ . . . + 200 c o t θ + 20 20 ] = 10 i = 1 20 i = 10. ( 20.21 ) / 2 = 2100 the\quad above\quad expression\quad can\quad be\quad written\quad as\\ =\lim _{ \theta \rightarrow \frac { \pi }{ 2 } }{ \frac { { (1+tan\theta ) }^{ 10 }+{ (2+tan\theta ) }^{ 10 }...{ (20+tan\theta ) }^{ 10 }-20{ tan }^{ 10 }\theta }{ { tan }^{ 9 }\theta } } \\ =\lim _{ \theta \rightarrow \frac { \pi }{ 2 } }{ tan\theta \quad [\quad ({ cot\theta +1) }^{ 10 }\quad +\quad (2{ cot\theta +1) }^{ 10 }\quad ...+({ 20cot\theta +1) }^{ 10 }\quad -20] } \\ now\quad on\quad applying\quad binomial\quad approxiamation\quad to\quad each\quad term,we\\ obtain:-\\ =\lim _{ \theta \rightarrow \frac { \pi }{ 2 } }{ tan\theta \quad [\quad ({ 10cot\theta +1) }\quad +\quad (2{ 0cot\theta +1) }\quad ...+({ 200cot\theta +1) }\quad -20] } \\ =\lim _{ \theta \rightarrow \frac { \pi }{ 2 } }{ tan\theta \quad [\quad { 10cot\theta }\quad +\quad { 20cot\theta }\quad ...+{ 200cot\theta }\quad +\quad 20\quad -\quad 20] } \\ =10\sum _{ i=1 }^{ 20 }{ i } \\ =10.(20.21)/2\\ =2100

Rico Lee
Nov 9, 2016

I chose 2100 because of the 9+10 meme/vine. I absolutely do not know how to do this.

Fox To-ong
Mar 19, 2015

by binomial approximation method and summation factors:

Yeahbsolutely :)

Siddharth Bhatnagar - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...