L e t f ( θ ) = t a n 9 θ 1 ( ( 1 + t a n θ ) 1 0 + ( 2 + t a n θ ) 1 0 + . . . + ( 2 0 + t a n θ ) 1 0 ) − 2 0 t a n θ T h e l e f t h a n d l i m i t o f f ( θ ) a s θ → 2 π i s
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I chose 2100 because of the 9+10 meme/vine. I absolutely do not know how to do this.
by binomial approximation method and summation factors:
Yeahbsolutely :)
Problem Loading...
Note Loading...
Set Loading...
t h e a b o v e e x p r e s s i o n c a n b e w r i t t e n a s = lim θ → 2 π t a n 9 θ ( 1 + t a n θ ) 1 0 + ( 2 + t a n θ ) 1 0 . . . ( 2 0 + t a n θ ) 1 0 − 2 0 t a n 1 0 θ = lim θ → 2 π t a n θ [ ( c o t θ + 1 ) 1 0 + ( 2 c o t θ + 1 ) 1 0 . . . + ( 2 0 c o t θ + 1 ) 1 0 − 2 0 ] n o w o n a p p l y i n g b i n o m i a l a p p r o x i a m a t i o n t o e a c h t e r m , w e o b t a i n : − = lim θ → 2 π t a n θ [ ( 1 0 c o t θ + 1 ) + ( 2 0 c o t θ + 1 ) . . . + ( 2 0 0 c o t θ + 1 ) − 2 0 ] = lim θ → 2 π t a n θ [ 1 0 c o t θ + 2 0 c o t θ . . . + 2 0 0 c o t θ + 2 0 − 2 0 ] = 1 0 ∑ i = 1 2 0 i = 1 0 . ( 2 0 . 2 1 ) / 2 = 2 1 0 0