t t as in tangent?

Calculus Level 3

Find the sum (correct to one decimal place) of all values of t R t \in \mathbb{R} such that 0 π / 2 sin x + t cos x d x = 1 \int_{0}^{\pi/2} \mid \sin x + t \cos x\mid \, dx = 1


The answer is -1.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 20, 2020

Let the integral be I ( t ) I(t) . For t > 0 t > 0 ,

I ( t 0 ) = 0 π 2 ( sin x + t cos x ) d x = c o s x + t cos x 0 π 2 = 1 + t \begin{aligned} I(t \ge 0) & = \int_0^\frac \pi 2 (\sin x + t \cos x) \ dx \\ & = - cos x + t \cos x \ \bigg|_0^\frac \pi 2 \\ & = 1 + t \end{aligned}

There is no solution for t > 0 t > 0 .

For t 0 t \le 0 ,

I ( t 0 ) = 0 π 2 sin x + t cos x d x = 0 π 2 1 + t 2 sin ( x + tan 1 t ) d x = 1 + t 2 0 π 2 sin ( x + tan 1 t ) d x = 1 + t 2 ( 0 tan 1 t sin ( x + tan 1 t ) d x + tan 1 t π 2 sin ( x + tan 1 t ) d x ) = 1 + t 2 ( cos ( x + tan 1 t ) 0 tan 1 t + cos ( x + tan 1 t ) π 2 tan 1 t ) = 1 + t 2 ( 1 1 1 + t 2 + 1 + t 1 + t 2 ) = 2 1 + t 2 1 + t \begin{aligned} I(t\le 0) & = \int_0^\frac \pi 2 |\sin x + t \cos x| \ dx \\ & = \int_0^\frac \pi 2 \left|\sqrt{1+t^2} \sin \left(x + \tan^{-1} t \right) \right| \ dx \\ & = \sqrt{1+t^2} \int_0^\frac \pi 2 \left|\sin \left(x + \tan^{-1} t \right) \right| \ dx \\ & = \sqrt{1+t^2} \left(-\int_0^{-\tan^{-1}t} \sin \left(x + \tan^{-1} t \right) dx + \int_{-\tan^{-1}t}^\frac \pi 2 \sin \left(x + \tan^{-1} t \right) dx \right) \\ & = \sqrt{1+t^2} \left(\cos \left(x + \tan^{-1} t \right) \bigg|_0^{-\tan^{-1} t} + \cos \left(x + \tan^{-1} t \right) \bigg|_\frac \pi 2^{-\tan^{-1} t} \right) \\ & = \sqrt{1+t^2} \left(1 - \frac 1{\sqrt{1+t^2}} + 1 + \frac t{\sqrt{1+t^2}} \right) \\ & = 2\sqrt{1+t^2} - 1 + t \end{aligned}

For I ( t 0 ) = 1 I(t\le 0) = 1 ,

2 1 + t 2 1 + t = 1 4 + 4 t 2 = 4 4 t + t 2 t ( 3 t + 4 ) = 0 t = { 0 4 3 \begin{aligned} \implies 2 \sqrt{1+t^2} - 1 + t & = 1 \\ 4 + 4t^2 & = 4-4t + t^2 \\ t(3t+4) & = 0 \\ \implies t & = \begin{cases} 0 \\ - \frac 43 \end{cases} \end{aligned}

The sum of values of t t satisfying the equation is 0 4 3 1.33 0 - \dfrac 43 \approx \boxed{-1.33} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...