Take A Closer Look

Algebra Level 3

1 100 + 99 + 1 99 + 98 + 1 98 + 97 + + 1 3 + 2 + 1 2 + 1 \frac{1}{\sqrt{100}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{98}}+\frac{1}{\sqrt{98}+\sqrt{97}}+\cdots+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{1}}

If the above expression equals k k , find k 2 k^{2} .


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brandon Monsen
Dec 14, 2015

First, let's start rationalizing the denominators. To do this, we can multiply the term 1 100 + 99 \frac{1}{\sqrt{100}+\sqrt{99}} by 100 99 100 99 \frac{\sqrt{100}-\sqrt{99}}{\sqrt{100}-\sqrt{99}} to get 100 99 \sqrt{100}-\sqrt{99} .

We can repeat this same process all the way down our sum, and end up with 100 99 + 99 98 + 98 97 + . . . + 3 2 + 2 1 \sqrt{100}-\sqrt{99}+\sqrt{99}-\sqrt{98}+\sqrt{98}-\sqrt{97}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}

Conveniently, all of the terms except for 100 1 \sqrt{100}-\sqrt{1} cancel! This is called a Telescoping Sum .

Now, we can conclude that our sum is k = 100 1 = 10 1 = 9 k=\sqrt{100}-\sqrt{1}=10-1=9 , so k 2 = 81 k^{2}=\boxed{81}

Chew-Seong Cheong
Dec 14, 2015

Same logic as Brandon Monsen 's, just different presentation.

k = n = 1 99 1 n + n + 1 = n = 1 99 n + 1 n ( n + 1 + n ) ( n + 1 n ) = n = 1 99 n + 1 n n + 1 n = n = 1 99 ( n + 1 n ) = n = 2 100 n n = 1 99 n = 100 1 = 9 \begin{aligned} k & = \sum_{n=1}^{99} \frac{1}{\sqrt{n}+\sqrt{n+1}} \\ & = \sum_{n=1}^{99} \frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})} \\ & = \sum_{n=1}^{99} \frac{\sqrt{n+1}-\sqrt{n}}{n+1-n} \\ & = \sum_{n=1}^{99} \left(\sqrt{n+1}-\sqrt{n} \right) \\ & = \sum_{n=2}^{100} \sqrt{n} - \sum_{n=1}^{99} \sqrt{n} \\ & = \sqrt{100} - \sqrt{1} \\ & = 9 \end{aligned}

k 2 = 9 2 = 81 \Rightarrow k^2 = 9^2 = \boxed{81}

Can you please how you moved from fourth line to fifth line ??

Chaitnya Shrivastava - 5 years, 5 months ago

Log in to reply

Expanding the two summation series.

\begin{aligned} \sum_{n=2}^{100}\sqrt{n} - \sum_{n=1}^{99}\sqrt {n} & =(\sqrt{2} +\sqrt {3}+\sqrt {4} +... +\sqrt{100})-(\sqrt {1}+\sqrt {2}+\sqrt {3}+...+\sqrt {99})\\ & = \sqrt {100}-\sqrt {1} \end{aligned} \end {equation}

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

thank you @Chew-Seong Cheong

Chaitnya Shrivastava - 5 years, 5 months ago
Ramiel To-ong
Feb 1, 2016

use summation notation

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...