Take care, it's jerking!

The displacement x x metres ( m \text{m} ) of a body along with time t t seconds ( s \text{s} ) is given by 8 t 4 + 5 t 3 + 2 t 2 + 4 t + 1 8t^4 + 5t^3 + 2t^2 + 4t + 1 . Find the jerk in ms 3 \text{ms}^{-3} that the body produces after 1 s \text{s} of motion.


The answer is 222.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 19, 2016

The jerk of the body is given by:

j ( t ) = d 3 x ( t ) d t 3 = d 2 d t 2 ( d d t ( 8 t 4 + 5 t 3 + 2 t 2 + 4 t + 1 ) ) = d d t ( d d t ( 32 t 3 + 15 t 2 + 4 t + 4 ) ) = d d t ( 96 t 2 + 30 t + 4 ) = 192 t + 30 j ( 1 ) = 192 + 30 = 222 ms 3 \begin{aligned} j(t) & = \frac {d^3 x(t)}{dt^3} \\ & = \frac {d^2}{dt^2} \left( \frac d{dt} \left(8t^4 + 5t^3 + 2t^2 + 4t + 1\right) \right) \\ & = \frac d{dt} \left( \frac d{dt} \left(32t^3 + 15t^2 + 4t + 4 \right) \right) \\ & = \frac d{dt} \left(96t^2 + 30t + 4 \right) \\ & = 192t + 30 \\ \implies j(1) & = 192+30 = \boxed{222} \text{ ms}^{-3} \end{aligned}

Ashish Menon
Jul 19, 2016

x = 8 t 4 + 5 t 3 + 2 t 2 + 4 t + 1 d d t x = d d t ( 8 t 4 + 5 t 3 + 2 t 2 + 4 t + 1 ) v = 32 t 3 + 15 t 2 + 4 t + 4 d d t v = d d t ( 32 t 3 + 15 t 2 + 4 t + 4 ) a = 96 t 2 + 30 t + 4 d d t a = d d t ( 96 t 2 + 30 t + 4 ) j = 192 t + 30 at t=1 j = 192 ( 1 ) + 30 = 222 \begin{aligned} x & = 8t^4 + 5t^3 + 2t^2 + 4t + 1\\ \\ \dfrac{d}{dt} x & = \dfrac{d}{dt} \left(8t^4 + 5t^3 + 2t^2 + 4t + 1\right)\\ \\ v & = 32t^3 + 15t^2 + 4t + 4\\ \\ \dfrac{d}{dt} v & = \dfrac{d}{dt} \left(32t^3 + 15t^2 + 4t + 4\right)\\ \\ a & = 96t^2 + 30t + 4\\ \\ \dfrac{d}{dt} a & = \dfrac{d}{dt} \left(96t^2 + 30t + 4\right)\\ \\ j & = 192t + 30\\ \\ \therefore \text{at t=1}\\ j & = 192(1) + 30\\ \\ & = \color{#3D99F6}{\boxed{222}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...