If n = 1 ∑ ∞ n 2 + n n m o d 3 = ln ( a ) where a is positive integer. Find a a .
Source : Maths fact , posted by Pierre Mounir
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Consider the Maclaurin series below:
1 − x 1 − ln ( 1 − x ) ( 1 − x ) ln ( 1 − x ) + x = n = 0 ∑ ∞ x n = n = 1 ∑ ∞ n x n = n = 1 ∑ ∞ n ( n + 1 ) x n + 1 Integrate w.r.t. x Integrate w.r.t. x again
Note that in both cases, the constant of integration C = 0 , because L H S = 0 , when x = 0 .
Now let S ( x ) = n = 1 ∑ ∞ n ( n + 1 ) x n + 1 = ( 1 − x ) ln ( 1 − x ) + x . We find that, where ω is the cubic root of unity:
S ( 1 ) + S ( ω ) + S ( ω 2 ) S ( 1 ) + ω S ( ω ) + ω 2 S ( ω 2 ) = 2 ( 3 ) 3 + 5 ( 6 ) 3 + 8 ( 9 ) 3 + ⋯ = 1 ( 2 ) 3 + 4 ( 5 ) 3 + 7 ( 8 ) 3 + ⋯
Therefore,
n = 1 ∑ ∞ n ( n + 1 ) n m o d 3 = 3 3 S ( 1 ) + ( ω + 2 ) S ( ω ) + ( ω 2 + 2 ) S ( ω 2 ) = 3 1 ( 3 x → 1 lim ( 1 − x ) ln ( 1 − x ) + 3 + ( ω + 2 ) ( ( 1 − ω ) ln ( 1 − ω ) + ω ) + ( ω 2 + 2 ) ( ( 1 − ω 2 ) ln ( 1 − ω 2 ) + ω 2 ) ) = 3 1 ( ( ω + 2 ) ( 1 − ω ) ln ( 1 − ω ) + ( ω 2 + 2 ) ( 1 − ω 2 ) ln ( 1 − ω 2 ) ) = 3 1 ( ( 1 − ω 2 ) ( 1 − ω ) ln ( 1 − ω ) + ( 1 − ω ) ( 1 − ω 2 ) ln ( 1 − ω 2 ) ) = 3 1 ( ( 1 − ω ) ( 1 − ω 2 ) ln ( ( 1 − ω ) ( 1 − ω 2 ) ) ) = 3 1 ( 3 ln 3 ) = ln 3
And a a = 3 3 = 2 7 .
Nice solution sir. I was thinking about applying cube roots of unity(usually I apply it for alternating series) but instead decided to apply double integrals which made the solution really easy. I will post my solution today.
Problem Loading...
Note Loading...
Set Loading...
What we want to find out is:-
r = 0 ∑ ∞ ( 3 r + 1 ) ( 3 r + 2 ) 1 + 2 r = 0 ∑ ∞ ( 3 r + 2 ) ( 3 r + 3 ) 1
both of these series are convergent by Limit comparison Test.
We know 1 − y 1 = r = 0 ∑ ∞ y r , 0 ≤ y < 1
So 1 − y 3 1 = r = 0 ∑ ∞ y 3 r
So ∫ 0 x 1 − y 3 d y = r = 0 ∑ ∞ 3 r + 1 x 3 r + 1 , 0 ≤ x < 1
So ∫ 0 1 ∫ 0 x 1 − y 3 1 d y d x = r = 0 ∑ ∞ ( 3 r + 1 ) ( 3 r + 2 ) 1
Again :- 1 − y 3 y = r = 0 ∑ ∞ y 3 r + 1
So ∫ 0 x 1 − y 3 y d y = r = 0 ∑ ∞ 3 r + 2 x 3 r + 2
So ∫ 0 1 ∫ 0 x 1 − y 3 y d y d x = r = 0 ∑ ∞ ( 3 r + 2 ) ( 3 r + 3 ) 1
So we just have to evaluate the integral :-
∫ 0 1 ∫ 0 x 1 − y 3 1 + 2 y d y d x
Now what we want to do is change the order of integration:-
So the integral becomes
∫ 0 1 ∫ y 1 1 − y 3 1 + 2 y d x d y
= ∫ 0 1 1 − y 3 ( 1 + 2 y ) ( 1 − y ) d y
= ∫ 0 1 1 + y + y 2 1 + 2 y d y
Now substituting 1 + y + y 2 = z we have ( 1 + 2 y ) d y = d z
So our integral becomes:-
∫ 1 3 z d z = ln ( 3 ) which is our answer.