Take care of just 1 and 2

Calculus Level pending

If n = 1 n m o d 3 n 2 + n = ln ( a ) \sum_{n=1}^{\infty} \frac{n\bmod 3}{n^2+n}=\ln(a) where a a is positive integer. Find a a a^a .


Source : Maths fact , posted by Pierre Mounir


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

What we want to find out is:-

r = 0 1 ( 3 r + 1 ) ( 3 r + 2 ) + 2 r = 0 1 ( 3 r + 2 ) ( 3 r + 3 ) \displaystyle \sum_{r=0}^{\infty}\frac{1}{(3r+1)(3r+2)} + 2\sum_{r=0}^{\infty}\frac{1}{(3r+2)(3r+3)}

both of these series are convergent by Limit comparison Test.

We know 1 1 y = r = 0 y r \displaystyle \frac{1}{1-y} = \sum_{r=0}^{\infty}y^{r} , 0 y < 1 \displaystyle 0\leq y <1

So 1 1 y 3 = r = 0 y 3 r \displaystyle \frac{1}{1-y^{3}} = \sum_{r=0}^{\infty}y^{3r}

So 0 x d y 1 y 3 = r = 0 x 3 r + 1 3 r + 1 \displaystyle \int_{0}^{x}\frac{dy}{1-y^{3}} = \sum_{r=0}^{\infty}\frac{x^{3r+1}}{3r+1} , 0 x < 1 \displaystyle 0\leq x < 1

So 0 1 0 x 1 1 y 3 d y d x = r = 0 1 ( 3 r + 1 ) ( 3 r + 2 ) \displaystyle \int_{0}^{1}\int_{0}^{x}\frac{1}{1-y^{3}}dydx = \sum_{r=0}^{\infty}\frac{1}{(3r+1)(3r+2)}

Again :- y 1 y 3 = r = 0 y 3 r + 1 \displaystyle \frac{y}{1-y^{3}} = \sum_{r=0}^{\infty}y^{3r+1}

So 0 x y d y 1 y 3 = r = 0 x 3 r + 2 3 r + 2 \displaystyle \int_{0}^{x}\frac{ydy}{1-y^{3}} = \sum_{r=0}^{\infty}\frac{x^{3r+2}}{3r+2}

So 0 1 0 x y 1 y 3 d y d x = r = 0 1 ( 3 r + 2 ) ( 3 r + 3 ) \displaystyle \int_{0}^{1}\int_{0}^{x}\frac{y}{1-y^{3}}dydx = \sum_{r=0}^{\infty}\frac{1}{(3r+2)(3r+3)}

So we just have to evaluate the integral :-

0 1 0 x 1 + 2 y 1 y 3 d y d x \large \int_{0}^{1}\int_{0}^{x} \frac{1+2y}{1-y^{3}} dydx

Now what we want to do is change the order of integration:-

So the integral becomes

0 1 y 1 1 + 2 y 1 y 3 d x d y \large \int_{0}^{1}\int_{y}^{1} \frac{1+2y}{1-y^{3}} dxdy

= 0 1 ( 1 + 2 y ) ( 1 y ) 1 y 3 d y \large = \int_{0}^{1} \frac{(1+2y)(1-y)}{1-y^{3}}dy

= 0 1 1 + 2 y 1 + y + y 2 d y \large = \int_{0}^{1} \frac{1+2y}{1+y+y^{2}}dy

Now substituting 1 + y + y 2 = z 1+y+y^{2} = z we have ( 1 + 2 y ) d y = d z (1+2y)dy = dz

So our integral becomes:-

1 3 d z z = ln ( 3 ) \large \int_{1}^{3} \frac{dz}{z} = \ln(3) which is our answer.

Chew-Seong Cheong
Apr 17, 2020

Consider the Maclaurin series below:

1 1 x = n = 0 x n Integrate w.r.t. x ln ( 1 x ) = n = 1 x n n Integrate w.r.t. x again ( 1 x ) ln ( 1 x ) + x = n = 1 x n + 1 n ( n + 1 ) \begin{aligned} \frac 1{1-x} & = \sum_{n=0}^\infty x^n & \small \blue{\text{Integrate w.r.t. }x} \\ - \ln (1-x) & = \sum_{n=1}^\infty \frac {x^n}{n} & \small \blue{\text{Integrate w.r.t. }x \text{ again}} \\ (1-x)\ln(1-x)+x & = \sum_{n=1}^\infty \frac {x^{n+1}}{n(n+1)} \end{aligned}

Note that in both cases, the constant of integration C = 0 C = 0 , because L H S = 0 LHS = 0 , when x = 0 x=0 .

Now let S ( x ) = n = 1 x n + 1 n ( n + 1 ) = ( 1 x ) ln ( 1 x ) + x \displaystyle S(x) = \sum_{n=1}^\infty \frac {x^{n+1}}{n(n+1)} = (1-x)\ln(1-x)+x . We find that, where ω \omega is the cubic root of unity:

S ( 1 ) + S ( ω ) + S ( ω 2 ) = 3 2 ( 3 ) + 3 5 ( 6 ) + 3 8 ( 9 ) + S ( 1 ) + ω S ( ω ) + ω 2 S ( ω 2 ) = 3 1 ( 2 ) + 3 4 ( 5 ) + 3 7 ( 8 ) + \begin{aligned} S(1) + S(\omega) + S(\omega^2) & = \frac 3{2(3)} + \frac 3{5(6)} + \frac 3{8(9)} + \cdots \\ S(1) + \omega S(\omega) + \omega^2 S(\omega^2) & = \frac 3{1(2)} + \frac 3{4(5)} + \frac 3{7(8)} + \cdots \end{aligned}

Therefore,

n = 1 n m o d 3 n ( n + 1 ) = 3 S ( 1 ) + ( ω + 2 ) S ( ω ) + ( ω 2 + 2 ) S ( ω 2 ) 3 = 1 3 ( 3 lim x 1 ( 1 x ) ln ( 1 x ) + 3 + ( ω + 2 ) ( ( 1 ω ) ln ( 1 ω ) + ω ) + ( ω 2 + 2 ) ( ( 1 ω 2 ) ln ( 1 ω 2 ) + ω 2 ) ) = 1 3 ( ( ω + 2 ) ( 1 ω ) ln ( 1 ω ) + ( ω 2 + 2 ) ( 1 ω 2 ) ln ( 1 ω 2 ) ) = 1 3 ( ( 1 ω 2 ) ( 1 ω ) ln ( 1 ω ) + ( 1 ω ) ( 1 ω 2 ) ln ( 1 ω 2 ) ) = 1 3 ( ( 1 ω ) ( 1 ω 2 ) ln ( ( 1 ω ) ( 1 ω 2 ) ) ) = 1 3 ( 3 ln 3 ) = ln 3 \begin{aligned} \sum_{n=1}^\infty \frac {n \bmod 3}{n(n+1)} & = \frac {3S(1) + (\omega + 2)S(\omega) + (\omega^2 + 2)S(\omega^2)}3 \\ & = \small \frac 13 \left(3\lim_{x \to 1}(1-x)\ln(1-x) + 3 + (\omega + 2)\left((1-\omega) \ln (1-\omega) + \omega \right) + (\omega^2 + 2)\left((1-\omega^2) \ln (1-\omega^2) + \omega^2 \right) \right) \\ & = \frac 13 \left((\omega + 2)(1-\omega) \ln (1-\omega) + (\omega^2 + 2)(1-\omega^2) \ln (1-\omega^2) \right) \\ & = \frac 13 \left((1-\omega^2)(1-\omega) \ln (1-\omega) + (1-\omega)(1-\omega^2) \ln (1-\omega^2) \right) \\ & = \frac 13 \left((1-\omega)(1-\omega^2) \ln ((1-\omega)(1-\omega^2))\right) \\ & = \frac 13 \left(3 \ln 3\right) \\ & = \ln 3 \end{aligned}

And a a = 3 3 = 27 a^a = 3^3 = \boxed {27} .

Nice solution sir. I was thinking about applying cube roots of unity(usually I apply it for alternating series) but instead decided to apply double integrals which made the solution really easy. I will post my solution today.

Arghyadeep Chatterjee - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...