Take it easy :')

Algebra Level 4

( 2 ω + 1 ω ) 1000 ( ω 2 1 ω 2 ) 1000 = ? \large { { \left (\frac { 2\omega +1 }{ \omega } \right ) }^{ 1000 }-{ \left (\frac { { \omega }^{ 2 }-1 }{ { \omega }^{ 2 } } \right ) }^{ 1000 } = \ ? }

Details and Assumptions

w w denote the cube root unity, which is the root of x 3 = 1 x^3 = 1 other than 1 1 .


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

X = ( 2 ω + 1 ω ) 1000 ( ω 2 1 ω 2 ) 1000 ω 3 = 1 X = ( ω 3 ( 2 ω + 1 ) ω ) 1000 ( ω 3 ( ω 2 1 ) ω 2 ) 1000 X = ( ω 2 ( 2 ω + 1 ) ) 1000 ( ω ( ω 2 1 ) ) 1000 X = ( 2 ω 3 + ω 2 ) 1000 ( ω 3 ω ) 1000 X = ( 2 + ω 2 ) 1000 ( 1 ω ) 1000 X = ( 1 + 1 + ω 2 ) 1000 ( 1 ω ) 1000 X = ( 1 ω ) 1000 ( 1 ω ) 1000 = 0 \huge{ X={ (\frac { 2\omega +1 }{ \omega } ) }^{ 1000 }-{ (\frac { { \omega }^{ 2 }-1 }{ { \omega }^{ 2 } } ) }^{ 1000 }\\ { \because \omega }^{ 3 }=1\\ \therefore X={ (\frac { { \omega }^{ 3 }(2\omega +1) }{ \omega } ) }^{ 1000 }-{ (\frac { { { \omega }^{ 3 }(\omega }^{ 2 }-1) }{ { \omega }^{ 2 } } ) }^{ 1000 }\\ \quad X={ ({ \omega }^{ 2 }(2\omega +1)) }^{ 1000 }-{ ({ { \omega }(\omega }^{ 2 }-1)) }^{ 1000 }\\ \quad X\quad =\quad { (2{ \omega }^{ 3 }+{ \omega }^{ 2 }) }^{ 1000 }-{ ({ \omega }^{ 3 }-\omega ) }^{ 1000 }\\ \quad X\quad =\quad { (2+{ \omega }^{ 2 }) }^{ 1000 }-{ (1-\omega ) }^{ 1000 }\\ \quad X\quad =\quad { (1+1+{ \omega }^{ 2 }) }^{ 1000 }-{ (1-\omega ) }^{ 1000 }\\ \quad X\quad =\quad { (1-\omega ) }^{ 1000 }-{ (1-\omega ) }^{ 1000 }=\boxed { 0 } }

Conclusion: X = ( 2 ω + 1 ω ) n ( ω 2 1 ω 2 ) n = 0 \huge{ \\ X={ (\frac { 2\omega +1 }{ \omega } ) }^{ n }-{ (\frac { { \omega }^{ 2 }-1 }{ { \omega }^{ 2 } } ) }^{ n }=0 }

How is (1+1+w^2) = 1-w? I don't get it. Please enlighten me.

Clifford Lesmoras - 6 years, 5 months ago

Log in to reply

We have as a result of roots of unity: 1 + ω + ω 2 = 0 1 + \omega + \omega^{2} = 0 . Thus 1 + ω 2 = ω 1 + \omega^{2} = -\omega . From this we simplify ( 1 + ( 1 + ω 2 ) ) (1 + (1 + \omega^{2})) to ( 1 ω ) (1 - \omega) .

Isay Katsman - 6 years, 5 months ago

Sorry,, I didn't explain it, actually I didn't see your comment except right now ,, @Isay Katsman has good explanation if you are still confused see the solutions of this problem

Abdulrahman El Shafei - 6 years, 5 months ago

Log in to reply

I actually computed it xD and gave me the exact same result, but your explanation is more elegant because I suspect some problems require your method.

Radinoiu Damian - 6 years, 5 months ago
Sujoy Roy
Dec 25, 2014

( 2 ω + 1 ω ) 1000 ( ω 2 1 ω 2 ) 1000 (\frac{2\omega+1}{\omega})^{1000}-(\frac{\omega^2-1}{\omega^2})^{1000}

= ( 2 ω 3 + ω 2 ω 3 ) 1000 ( ω 3 ω ω 3 ) 1000 =(\frac{2\omega^3+\omega^2}{\omega^3})^{1000}-(\frac{\omega^3-\omega}{\omega^3})^{1000}

= ( 1 + 1 + ω 2 ) 1000 ( 1 ω ) 1000 =(1+1+\omega^2)^{1000}-(1-\omega)^{1000}

= ( 1 ω ) 1000 ( 1 ω ) 1000 = 0 =(1-\omega)^{1000}-(1-\omega)^{1000}=\boxed{0}

Kartik Sharma
Dec 26, 2014

X = 2 ω + 1 ω 1000 ω 2 1 ω 2 1000 X= {\frac{2\omega + 1}{\omega}}^{1000} - {\frac{{\omega}^{2} - 1}{{\omega}^{2}}}^{1000}

Let a = 2 ω + 1 ω , b = ω 2 1 ω 2 a = \frac{2\omega + 1}{\omega}, b = \frac{{\omega}^{2} -1}{{\omega}^{2}}

X = a 1000 b 1000 X = {a}^{1000} - {b}^{1000}

X = ( a b ) ( a 999 + a 998 b + . . . . . b 998 a + b 999 ) X = (a-b)({a}^{999} + {a}^{998}b +.....{b}^{998}a + {b}^{999})

a b = 2 ω + 1 ω ω 2 1 ω 2 a - b = \frac{2\omega + 1}{\omega} - \frac{{\omega}^{2} -1}{{\omega}^{2}}

= 2 ω 2 + ω ω 2 + 1 ω 2 = \frac{2{\omega}^{2} + \omega - {\omega}^{2} +1}{{\omega}^{2}}

= ω 2 + ω + 1 ω 2 = \frac{{\omega}^{2} + \omega + 1}{{\omega}^{2}}

Now, using geometric sum formula,

a b = ω 3 1 ω 1 ω 2 a-b = \frac{\frac{{\omega}^{3} - 1}{\omega - 1}}{{\omega}^{2}}

We know ω 3 = 1 {\omega}^{3} = 1

Hence, a b = 0 a-b = 0

Therefore, X = 0 X = 0

This helps. Thanks.

Clifford Lesmoras - 6 years, 5 months ago

how to use geometric sum frmula? give me link i wanna know math

Louiegie Paquit - 6 years, 5 months ago

Just 1+t+t²+t³+...+tⁿ= (1-t^(n+1))/(1-t)=(t^(n+1)-1)/(t-1) That is formula for geometric sum 1+x+x²+...+xⁿ

Nikola Djuric - 4 years, 4 months ago
Chew-Seong Cheong
Dec 27, 2014

The cubic roots of 1 satisfy the equation: ω 2 + ω + 1 = 0 \omega^2 + \omega + 1 =0 .

Therefore,

X = ( 2 ω + 1 ω ) 1000 ( ω 2 1 ω 2 ) 1000 X = \left( \dfrac {2\omega+1}{\omega} \right)^{1000} - \left( \dfrac {\omega^2-1}{\omega^2} \right)^{1000}

= ( ω + ( ω + 1 ) ω ) 1000 ( ( ω 1 ) ( ω + 1 ) ( ω + 1 ) ) 1000 \quad = \left( \dfrac {\omega + (\omega+1)}{\omega} \right)^{1000} - \left( \dfrac {(\omega-1)(\omega+1)}{-(\omega+1)} \right)^{1000}

= ( ω ω 2 ω ) 1000 ( 1 ω ) 1000 \quad = \left( \dfrac {\omega - \omega^2}{\omega} \right)^{1000} - \left( 1-\omega \right)^{1000}

= ( 1 ω ) 1000 ( 1 ω ) 1000 = 0 \quad = \left( 1 - \omega \right)^{1000} - \left( 1-\omega \right)^{1000} = \boxed{0}

U Z
Dec 25, 2014

X = ( 2 + w 3 w ) 1000 ( 1 w 3 w 2 ) 1000 X = ( 2 + \dfrac{w^3}{w})^{1000} - ( 1 - \dfrac{w^3}{w^2})^{1000}

X = [ ( 2 + w 2 ) 2 ] 500 [ ( 1 w ) 2 ] 500 X = [(2 + w^2)^2]^{500} - [(1 - w)^2]^{500}

X = ( 3 w ) 500 ( 3 w ) 500 = 0 X = ( -3w)^{500} - (-3w)^{500} = 0

Aditya Kumar
Dec 26, 2014

Multiply the denominator and numerator of the first term with ω \omega . Note that:

1 + ω + ω 2 = 0 \huge{1+\omega+\omega^2=0} 2 ω + 1 ω = 2 ω 2 + ω ω 2 = ω 2 + ( 1 ω ) + ω ω 2 = ω 2 1 ω 2 \huge{\frac{2\omega+1}{\omega}=\frac{2\omega^2+\omega}{\omega^2}=\frac{\omega^2+(-1-\omega)+\omega}{\omega^2}=\frac{\omega^2-1}{\omega^2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...