Take it to the limit

Calculus Level 3

Given f ( x ) = x + 5 2 f\left( x \right) = \frac{x + 5}{2} , g ( x ) = x + 7 g\left( x \right) = x + 7 , lim x 6 f ( g ( x ) ) = L \lim_{x \rightarrow 6}{f\left( g\left( x \right)\right)} = L and that f ( g ( x ) ) L < 0.005 \lvert f\left( g\left( x \right)\right) - L \rvert < 0.005 , what is the value of δ \delta such that x 6 < δ \lvert x - 6 \rvert < \delta ?

Detail : all the functions' domains and codomains, in this problem, are the set of the Real Numbers.


The answer is 0.01.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( g ( x ) ) = ( x + 7 ) + 5 2 = x 2 + 6 f\left( g\left( x \right)\right) = \frac{(x + 7) + 5}{2} = \frac{x}{2} + 6 . Noticing that lim x 6 f ( g ( x ) ) = 9 \lim_{x \rightarrow 6}{f\left( g\left( x \right)\right)} = 9 , we change the values of the given inequality:

f ( g ( x ) ) L < 0.005 ( x 2 + 6 ) 9 < 0.005 x 12 18 2 < 0.01 2 x 6 < 0.01 δ = 0.01 \lvert f\left( g\left( x \right)\right) - L \rvert < 0.005 \Rightarrow \lvert (\frac{x}{2} + 6) - 9 \rvert < 0.005 \Rightarrow \lvert \frac{x - 12 - 18}{2} \rvert < \frac{0.01}{2} \Rightarrow \lvert x - 6 \rvert < 0.01 \Rightarrow \delta = 0.01

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...