∫ 1 ∞ x n + 1 ln ( ln x ) d x
The minimum value of the given integral is A e γ + B
Submit your answer as A + B .
Notation: γ ≈ 0 . 5 7 7 2 denotes the Euler-Mascheroni constant .
Try another similar problem: Taking a Dip
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let I be the integral shown above. We consider the substitution u = ln x so that the integral becomes I = ∫ 0 ∞ e − n u ln ( u ) d u . Observe that this is simply the Laplace transform of the natural logarithm function, so I = − n 1 ( ln ( n ) + γ ) . The proof can be found here . Now, it remains to set the derivative of I to 0 to obtain that the minimum is reached when n = e 1 − γ . Substituting back the value of n yields the minimum value of I = − e 1 − γ and thus A = − 1 , B = − 1 ⇒ A + B = − 2 .
Problem Loading...
Note Loading...
Set Loading...
I ( n ) ∂ n ∂ I ( n ) = ∫ 1 ∞ x n + 1 ln ( ln x ) d x = ∫ 0 ∞ e n u ln u d u = − ∫ 0 ∞ u e − n u ln u d u = n u e − n u ln u ∣ ∣ ∣ ∣ 0 ∞ − n 1 ∫ 0 ∞ e − n u ( ln u + 1 ) d u = u → ∞ lim n e n u u ln u − u → 0 lim u n e n u ln u − n I ( n ) + n 2 e − n u ∣ ∣ ∣ ∣ 0 ∞ = u → ∞ lim n 2 e n u ln u + 1 − u → 0 lim u 2 n 2 u e n u − n e n u u 1 − n 2 1 = u → ∞ lim n 3 e n u u 1 − u → 0 lim n 2 u e n u − n e n u u − n I ( n ) − n 2 1 = 0 − 0 − n I ( n ) − n 2 1 Let u = ln x ⟹ e u = x ⟹ e u d u = d x By differentiation under an integral sign By integration by parts By L’H o ˆ pital’s rule
⟹ I ( n ) + n ∂ n ∂ I ( n ) ∂ n ∂ n I ( n ) ⟹ n I ( n ) ( 1 ) ( − γ ) ⟹ I ( n ) = − n 1 = − n 1 = C − ln n = C − ln 1 = − n γ + ln n where C is the constant of integration. Note that I ( 1 ) = ∫ 0 ∞ e − u ln u d u = − γ Note that C = − γ
To find the minimum value of I ( n ) ,
d n d I ( n ) ⟹ ln n n min ( I ( n ) ) = − n 2 1 − ( γ + ln n ) = 1 − γ = e 1 − γ = I ( e 1 − γ ) = − e 1 − γ γ + 1 − γ = − e γ − 1 Equating d n d I ( n ) = 0 Since d n 2 d 2 I ( n ) > 0 when n = e 1 − γ (see note)
⟹ A + B = − 1 − 1 = − 2
Note:
d n 2 d 2 I ( n ) I ′ ′ ( e 1 − γ ) = n 3 1 − ( ln n + γ − 1 ) ( 2 n ) = e 3 ( 1 − γ ) 1 − 0 > 0 Putting n = e 1 − γ