Taking a Dip II

Calculus Level 5

1 ln ( ln x ) x n + 1 d x \large \displaystyle \int_{1}^{\infty}\frac{\ln (\ln x)}{x^{n+1}}dx

The minimum value of the given integral is A e γ + B Ae^{\gamma+B}

Submit your answer as A + B A+B .

Notation: γ 0.5772 \gamma \approx 0.5772 denotes the Euler-Mascheroni constant .


Try another similar problem: Taking a Dip


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I ( n ) = 1 ln ( ln x ) x n + 1 d x Let u = ln x e u = x e u d u = d x = 0 ln u e n u d u By differentiation under an integral sign I ( n ) n = 0 u e n u ln u d u By integration by parts = u e n u ln u n 0 1 n 0 e n u ( ln u + 1 ) d u = lim u u ln u n e n u lim u 0 ln u n e n u u I ( n ) n + e n u n 2 0 By L’H o ˆ pital’s rule = lim u ln u + 1 n 2 e n u lim u 0 1 u n 2 u e n u n e n u u 2 1 n 2 = lim u 1 u n 3 e n u lim u 0 u n 2 u e n u n e n u I ( n ) n 1 n 2 = 0 0 I ( n ) n 1 n 2 \begin{aligned} I(n) & = \int_1^\infty \frac {\ln(\ln x)}{x^{n+1}}dx & \small \color{#3D99F6} \text{Let }u = \ln x \implies e^u = x \implies e^u du = dx \\ & = \int_0^\infty \frac {\ln u}{e^{nu}}du & \small \color{#3D99F6} \text{By differentiation under an integral sign} \\ \frac {\partial I(n)}{\partial n} & = - \int_0^\infty u e^{-nu} \ln u \ du & \small \color{#3D99F6} \text{By integration by parts} \\ & = \frac {u e^{-nu} \ln u }n \bigg|_0^\infty - \frac 1n \int_0^\infty e^{-nu}(\ln u + 1) \ du \\ & = {\color{#3D99F6} \lim_{u \to \infty} \frac {u \ln u}{ne^{nu}} - \lim_{u \to 0} \frac {\ln u}{\frac {ne^{nu}}u}} - \frac {I(n)}n+ \frac {e^{-nu}}{n^2}\bigg|_0^\infty & \small \color{#3D99F6} \text{By L'Hôpital's rule} \\ & = {\color{#3D99F6} \lim_{u \to \infty} \frac {\ln u+1}{n^2e^{nu}} - \lim_{u \to 0} \frac {\frac 1u}{\frac {n^2ue^{nu}-ne^{nu}}{u^2}}} - \frac 1{n^2} \\ & = \lim_{u \to \infty} \frac {\frac 1u}{n^3e^{nu}} - \lim_{u \to 0} \frac u{n^2ue^{nu}-ne^{nu}} - \frac {I(n)}n - \frac 1{n^2} \\ & = 0 - 0 - \frac {I(n)}n - \frac 1{n^2} \end{aligned}

I ( n ) + n I ( n ) n = 1 n n I ( n ) n = 1 n n I ( n ) = C ln n where C is the constant of integration. ( 1 ) ( γ ) = C ln 1 Note that I ( 1 ) = 0 e u ln u d u = γ I ( n ) = γ + ln n n Note that C = γ \begin{aligned} \implies I(n) + n \frac {\partial I(n)}{\partial n} & = - \frac 1n \\ \frac {\partial nI(n)}{\partial n} & = - \frac 1n \\ \implies n I(n) & = {\color{#3D99F6} C} - \ln n & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ (1) (- \gamma) & = C - \ln 1 & \small \color{#3D99F6} \text{Note that }I(1) = \int_0^\infty e^{-u} \ln u \ du = - \gamma \\ \implies I(n) & = - \frac {\gamma + \ln n}n & \small \color{#3D99F6} \text{Note that }C = - \gamma \end{aligned}

To find the minimum value of I ( n ) I(n) ,

d I ( n ) d n = 1 ( γ + ln n ) n 2 Equating d I ( n ) d n = 0 ln n = 1 γ n = e 1 γ Since d 2 I ( n ) d n 2 > 0 when n = e 1 γ (see note) min ( I ( n ) ) = I ( e 1 γ ) = γ + 1 γ e 1 γ = e γ 1 \begin{aligned} \frac {d I(n)}{dn} & = - \frac {1-(\gamma + \ln n)}{n^2} & \small \color{#3D99F6} \text{Equating }\frac {dI(n)}{dn} = 0 \\ \implies \ln n & = 1-\gamma \\ n & = e^{1-\gamma} & \small \color{#3D99F6} \text{Since }\frac {d^2I(n)}{dn^2} > 0 \text{ when } n = e^{1-\gamma} \text{ (see note)} \\ \min (I(n)) & = I(e^{1-\gamma}) \\ & = - \frac {\gamma + 1 -\gamma}{e^{1-\gamma}} \\ & = - e^{\gamma -1} \end{aligned}

A + B = 1 1 = 2 \implies A+B = -1-1 = \boxed{-2}


Note:

d 2 I ( n ) d n 2 = 1 ( ln n + γ 1 ) ( 2 n ) n 3 Putting n = e 1 γ I ( e 1 γ ) = 1 0 e 3 ( 1 γ ) > 0 \begin{aligned} \frac {d^2I(n)}{dn^2} & = \frac {1-(\ln n + \gamma -1)(2n)}{n^3} & \small \color{#3D99F6} \text{Putting }n=e^{1-\gamma} \\ I''(e^{1-\gamma}) & = \frac {1-0}{e^{3(1-\gamma)}} > 0 \end{aligned}

敬全 钟
Dec 3, 2017

Let I I be the integral shown above. We consider the substitution u = ln x u=\ln x so that the integral becomes I = 0 e n u ln ( u ) d u . I=\int^{\infty}_0e^{-nu}\ln(u)\ du. Observe that this is simply the Laplace transform of the natural logarithm function, so I = 1 n ( ln ( n ) + γ ) . I=-\frac{1}{n}(\ln(n)+\gamma). The proof can be found here . Now, it remains to set the derivative of I I to 0 to obtain that the minimum is reached when n = e 1 γ . n=e^{1-\gamma}. Substituting back the value of n n yields the minimum value of I = e 1 γ I=-e^{1-\gamma} and thus A = 1 , B = 1 A + B = 2. A=-1, B=-1\Rightarrow A+B=-2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...