Logs and Trig?

Geometry Level 1

ln ( tan 1 ) + ln ( tan 2 ) + + ln ( tan 8 8 ) + ln ( tan 8 9 ) = ? \ln(\tan1^{\circ})+ \ln(\tan2^{\circ})+\ldots+\ln(\tan88^{\circ})+\ln(\tan89^{\circ})= \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

By the property of logarithms ln a + ln b = ln ( a b ) \ln a+\ln b=\ln(ab) the expression is now: ln ( tan 1 ° tan 2 ° tan 3 ° . . . tan 89 ° ) \ln(\tan 1° \tan 2° \tan 3° ... \tan 89°) . Now, by the identity tan ( 90 ° θ ) = 1 tan θ \tan(90°-\theta)=\dfrac{1}{\tan \theta} the expression is now: ln ( tan 1 ° tan 2 ° tan 3 ° . . . tan 45 ° 1 tan 1 ° 1 tan 2 ° 1 tan 3 ° . . . ) \ln\left(\tan 1° \tan 2° \tan 3° ... \tan 45° \dfrac{1}{\tan 1°} \dfrac{1}{\tan 2°} \dfrac{1}{\tan 3°} ...\right) . Everything cancels except tan 45 ° \tan 45° which is 1 1 , so the expression is now ln 1 = 0 \ln 1=\boxed{0} .

This is a pretty solution.

Panya Chunnanonda - 6 years, 7 months ago

What a use of formulas and trigonometric ratios!

Afaq Ahmed - 5 years, 2 months ago
Nafees Zakir
Oct 15, 2014

As we know ln a + ln b = ln a × b \ln a+\ln b=\ln a\times b so the series will go on as ln ( tan 1 × t a n 2 × t a n 3 × . . . . × t a n 89 ) \ln (\tan 1\times tan2\times tan3 \times \:....\:\times tan89) Now from the multiplication we get the result, ln 1 = 0 \ln 1=\boxed{0}

i did the same way!

parth tandon - 6 years, 8 months ago
Shreyash Meena
Nov 4, 2014

The Question actually involves both trigonometry and logarithmic knowledge. Clearly ln(x) + ln(y) = ln(xy), therefore, ln(tan1.tan2.....tan89)=ln(tan1tan2.....tan45.1/tan1.tan2.....)=ln(tan45)=ln1=0.

Fox To-ong
Dec 16, 2014

ln(tan 1 ) + ln(tan 89) = 0 same as ln(tan2) + ln(tan 88) = 0 sum up all the values = 0

Christian Daang
Nov 4, 2014

So,

In (tan 1 * tan 2 * tan 3 * ... * tan 89) in degrees all is, 1..

Then,

In(1) = 0

Final answer: 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...