Tan Roots

Algebra Level 5

Suppose the roots of the monic polynomial x 8 92 x 6 + 134 x 4 28 x 2 + 1 x^{8}-92x^{6}+134x^{4}-28x^{2}+1 are tan ( m i π ) \tan(m_{i}\pi) where 1 i 8 1\leq i\leq8 and 0 < m i < 1. 0<m_{i}<1. Find the value of i = 1 8 m i . \displaystyle{\sum_{i=1}^8 m_i}.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Adit Mohan
Jul 15, 2014

all powers of x in the polynomial are even. so if tan(m1pi) is a solution, so is -tan(m1pi). -tan(m1pi)=tan(pi-m1pi).
so mi is of the form :.
m1=1-m2,.
m3=1-m4...
m1+m2=1,m3+m4=1,m5+m6=1,m7+m8=1;.
adding m1+m2+m3+m4+m5+m6+m7+m8=4


dats wonderful

Rohith M.Athreya - 4 years, 6 months ago
Souryajit Roy
Jul 13, 2014

I show that the roots of the given polynomial are t a n ( r π / 15 ) tan(rπ/15) where 1 r 15 1≤r≤15 and g c d ( r , 15 ) = 1 gcd(r,15)=1 .

Instead of proving that the roots if the polynomial are those 8 8 numbers,I prove that the unique monic polynomial whose zeros are the 8 8 numbers is x 8 92 x 6 + 134 x 4 28 x 2 + 1 x^{8}-92x^{6}+134x^{4}-28x^{2}+1

Note that if θ = r π / 15 \theta=rπ/15 for 1 r 15 1≤r≤15 and g c d ( r , 15 ) = 1 gcd(r,15)=1 ,then

t a n 2 ( 5 θ ) = 3 tan^{2}(5\theta)=3 and t a n 2 θ 3 tan^{2}\theta≠3 .

Now, I find the equation whose roots are x = t a n θ x=tan\theta .

t a n 5 θ = I m ( c o s θ + i s i n θ ) 5 R e ( c o s θ + i s i n θ ) 5 tan5\theta=\frac{Im(cos\theta+isin\theta)^{5}}{Re(cos\theta+isin\theta)^{5}}

= I m ( 1 + i t a n θ ) 5 R e ( 1 + i t a n θ ) 5 =\frac{Im(1+itan\theta)^{5}}{Re(1+itan\theta)^{5}}

= I m ( 1 + i x ) 5 R e ( 1 + i x ) 5 =\frac{Im(1+ix)^{5}}{Re(1+ix)^{5}}

Expanding binomially, ( i + i x ) 5 = ( 1 10 x 2 + 5 x 4 ) + i ( 5 x 10 x 3 + x 5 ) (i+ix)^{5}=(1-10x^2+5x^4)+i(5x-10x^3+x^5)

Hence, t a n 5 θ = x ( x 4 10 x 2 + 5 ) 5 x 4 10 x 2 + 1 tan5\theta=\frac{x(x^{4}-10x^{2}+5)}{5x^{4}-10x^{2}+1}

Squaring, x 2 ( x 4 10 x 2 + 5 ) 2 ( 5 x 4 10 x 2 + 1 ) 2 = 3 \frac{x^{2}(x^{4}-10x^{2}+5)^{2}}{(5x^{4}-10x^{2}+1)^{2}}=3

This reduces to x 10 95 x 8 + 410 x 6 430 x 4 + 85 x 2 3 = 0 x^{10}-95x^8+410x^6-430x^4+85x^2-3=0

or ( x 2 3 ) ( x 8 92 x 6 + 134 x 4 28 x 2 + 1 ) = 0 (x^2-3)(x^8-92x^6+134x^4-28x^2+1)=0

Since x 2 3 x^2≠3 , we have ( x 8 92 x 6 + 134 x 4 28 x 2 + 1 ) = 0 (x^8-92x^6+134x^4-28x^2+1)=0 .

Now the numbers relatively prime to 15 15 are 1 , 2 , 4 , 7 , 8 , 11 , 13 , 14 1,2,4,7,8,11,13,14

So the answer will be 1 + 2 + 4 + 7 + 8 + 11 + 13 + 14 15 = 60 15 = 4 \frac{1+2+4+7+8+11+13+14}{15}=\frac{60}{15}=4

Lu Chee Ket
Aug 26, 2014

With z^4 - 92 z^3 + 134 z^2 - 28 z^2 + 1 = 0

x = +/- sqrt(z) = Tan [n Pi/ 15]

(1 + 2 + 4 + 7 + 14 + 13 + 11 + 8)/ 15 = 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...