Sooo many TANS

Geometry Level 3

tan 2 π 16 + tan 2 2 π 16 + tan 2 3 π 16 + + tan 2 7 π 16 = ? \large \tan^2 \frac{\pi}{16} + \tan^{2} \frac{2\pi}{16} + \tan^{2}\frac{3\pi}{16} +\cdots+\tan^{2} \frac{7\pi}{16} = \ ?


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

tan 2 π 16 + tan 2 2 π 16 + tan 2 3 π 16 + tan 2 4 π 16 + tan 2 5 π 16 + tan 2 6 π 16 + tan 2 7 π 16 = tan 2 π 16 + tan 2 π 8 + tan 2 3 π 16 + tan 2 π 4 + tan 2 5 π 16 + tan 2 3 π 8 + tan 2 7 π 16 = tan 2 π 16 + tan 2 7 π 16 + tan 2 π 8 + tan 2 3 π 8 + tan 2 3 π 16 + tan 2 5 π 16 + tan 2 π 4 See Note = 4 sin 2 π 8 2 + 4 sin 2 π 4 2 + 4 sin 2 3 π 8 2 + 1 Note that sin π 4 = 1 2 = 4 1 2 ( 1 cos π 4 ) 2 + 8 2 + 4 1 2 ( 1 cos 3 π 4 ) 2 + 1 = 8 ( 1 1 1 2 + 1 1 + 1 2 ) + 3 = 8 ( 4 ) + 3 = 35 \tan^2 \frac \pi{16} + \tan^2 \frac {2\pi}{16} + \tan^2 \frac {3\pi}{16} + \tan^2 \frac {4\pi}{16} + \tan^2 \frac {5\pi}{16} + \tan^2 \frac {6\pi}{16} + \tan^2 \frac {7\pi}{16} \\ = \color{#3D99F6}{\tan^2 \frac \pi{16}} + \color{#D61F06}{\tan^2 \frac {\pi}{8}} + \color{#20A900}{\tan^2 \frac {3\pi}{16}} + \tan^2 \frac {\pi}{4} + \color{#20A900}{\tan^2 \frac {5\pi}{16}} + \color{#D61F06}{\tan^2 \frac {3\pi}{8}} + \color{#3D99F6}{\tan^2 \frac {7\pi}{16}} \\ = \color{#3D99F6}{\tan^2 \frac \pi{16} + \tan^2 \frac {7\pi}{16}} + \color{#D61F06}{\tan^2 \frac {\pi}{8} + \tan^2 \frac {3\pi}{8}} + \color{#20A900}{\tan^2 \frac {3\pi}{16} + \tan^2 \frac {5\pi}{16}} + \tan^2 \frac {\pi}{4} \quad \quad \small \color{#3D99F6}{\text{See Note}} \\ = \color{#3D99F6}{\dfrac 4{\sin^2 \frac \pi 8}-2} + \color{#D61F06}{\dfrac 4{\sin^2 \frac \pi 4}-2} + \color{#20A900}{\dfrac 4{\sin^2 \frac {3\pi}8}-2} + 1 \quad \quad \small \color{#3D99F6}{\text{Note that }\sin \frac \pi 4 = \frac 1{\sqrt 2}} \\ = \color{#3D99F6}{\dfrac 4{\frac 12(1-\cos \frac \pi 4)}-2} + \color{#D61F06}{8-2} + \color{#20A900}{\dfrac 4{\frac 12(1-\cos \frac {3\pi} 4)}-2} + 1 \\ = 8\left(\dfrac 1{1- \frac 1{\sqrt 2}} + \dfrac 1{1+ \frac 1{\sqrt 2}} \right)+ 3 \\ = 8(4) + 3 = \boxed{35}


Note: \color{#3D99F6}{\text{Note:}}

tan 2 π 16 + tan 2 7 π 16 = tan 2 π 16 + cot 2 π 16 = ( tan π 16 + cot π 16 ) 2 2 tan π 16 cot π 16 = ( sin π 16 cos π 16 + cos π 16 sin π 16 ) 2 2 sin π 16 cos π 16 cos π 16 sin π 16 = ( sin 2 π 16 + cos 2 π 16 sin π 16 cos 2 π 16 ) 2 2 = ( 2 sin π 8 ) 2 2 = 4 sin 2 π 8 2 \begin{aligned} \tan^2 \frac \pi{16} + \tan^2 \frac {7\pi}{16} & = \tan^2 \frac \pi{16} + \cot^2 \frac \pi{16} \\ & = \left(\tan \frac \pi{16} + \cot \frac \pi{16}\right)^2 - 2\tan \frac \pi{16} \cot \frac \pi{16} \\ & = \left(\frac {\sin \frac \pi{16}}{\cos \frac \pi{16}} + \frac {\cos \frac \pi{16}}{\sin \frac \pi{16}} \right)^2 - 2 \frac {\sin \frac \pi{16}}{\cos \frac \pi{16}} \cdot \frac {\cos \frac \pi{16}}{\sin \frac \pi{16}} \\ & = \left(\frac {\sin^2 \frac \pi{16} + \cos^2 \frac \pi{16}}{\sin \frac \pi{16}\cos^2 \frac \pi{16}} \right)^2 - 2 \\ & = \left(\frac 2{\sin \frac \pi{8}} \right)^2 - 2 \\ & = \frac 4{\sin^2 \frac \pi{8}} - 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...