Is it still pretty?

Calculus Level 3

0 π 2 1 1 + tan 3 ( x ) d x = ? \large \int_0^{\frac \pi 2} \frac1{1+\tan^3(x)} \, dx = \ ?

π 5 \frac\pi 5 π 6 \frac\pi 6 π 3 \frac\pi 3 π 4 \frac\pi 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider this integral

0 π / 2 1 1 + tan 3 ( x ) d x = 0 π / 4 1 1 + tan 3 ( x ) d x + π / 4 π / 2 1 1 + tan 3 ( x ) d x \displaystyle \int_{0}^{\pi/2}\frac{1}{1+\tan^{3}(x)} dx = \int_{0}^{\pi/4}\frac{1}{1+\tan^{3}(x)} dx + \int_{\pi/4}^{\pi/2}\frac{1}{1+\tan^{3}(x)} dx

then in the second term we change from x to u such that u = x π / 2 \displaystyle u=x-\pi/2

π / 4 0 tan 3 ( x ) tan 3 ( x ) 1 d x \displaystyle \int_{-\pi/4}^{0}\frac{\tan^{3}(x)}{\tan^{3}(x)-1} dx then change into u = u u'=-u

0 π / 4 tan 3 ( x ) 1 + tan 3 ( x ) d x \displaystyle \int_{0}^{\pi/4}\frac{\tan^{3}(x)}{1+\tan^{3}(x)} dx

combine these two term togather.

0 π / 4 ( 1 1 + tan 3 ( x ) + tan 3 ( x ) 1 + tan 3 ( x ) ) d x \displaystyle \int_{0}^{\pi/4}(\frac{1}{1+\tan^{3}(x)}+\frac{\tan^{3}(x)}{1+\tan^{3}(x)}) dx

0 π / 4 d x = π 4 \displaystyle \int_{0}^{\pi/4} dx=\frac{\pi}{4}

Moderator note:

You can shorten your solution by a bit if you consider the substitution x = π 2 y x = \frac \pi2 - y .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...