In △ A B C three circles are drawn such that they are tangent to two sides and the incircle. If the radii of the circles are 1, 4 and 9, find the inradius of the triangle.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S O L U T I O N :
In △ A B C let I be the incentre. Let the circles with radii 1,4 and 9 have centres P , Q , R respectively.
∠ I B D = ∠ I Q T = 2 ∠ B
Then sin 2 ∠ B = r + 4 r − 4
So 1 - sin 2 ∠ B = r + 4 8
and 1+ sin 2 ∠ B = r + 4 2 r
So 1 + sin 2 ∠ B 1 − sin 2 ∠ B = r 4
But LHS = ( cos 4 ∠ B + sin 4 ∠ B cos 4 ∠ B − sin 4 ∠ B ) 2 ⇒ ( 1 + tan 4 ∠ B 1 − tan 4 ∠ B ) 2
Which is equal to tan 2 ( 4 π − 4 ∠ B ) . Therefore tan 2 ( 4 π − 4 ∠ B ) = r 4
Similarly tan 2 ( 4 π − 4 ∠ A ) .= r 1
and tan 2 ( 4 π − 4 ∠ C ) . = r 9
( 4 π − 4 ∠ A ) + ( 4 π − 4 ∠ B ) + ( 4 π − 4 ∠ C ) = 2 π
Which implies tan ( 4 π − 4 ∠ A ) tan ( 4 π − 4 ∠ B ) + tan ( 4 π − 4 ∠ A ) tan ( 4 π − 4 ∠ C ) + tan ( 4 π − 4 ∠ B ) tan ( 4 π − 4 ∠ C ) = 1
Substituting the values we get
r 2 1 × 4 + r 2 1 × 9 + r 2 4 × 9 = 1
r 2 + r 3 + r 6 = 1 ⇒ r = 1 1
Problem Loading...
Note Loading...
Set Loading...
Similar solution with @Chirag Baliga ,s
Let the triangle be A B C and its incenter be I and inradius be r . We note that sin ∠ 2 B = I Q I S = r + 4 r − 4 , then cos ∠ 2 B = 1 − ( r + 4 ) 2 ( r − 4 ) 2 = r + 4 4 r . Similarly:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ sin ∠ 2 A = r + 1 r − 1 sin ∠ 2 B = r + 4 r − 4 sin ∠ 2 C = r + 9 r − 9 ⟹ cos ∠ 2 A = r + 1 2 r ⟹ cos ∠ 2 B = r + 1 4 r ⟹ cos ∠ 2 C = r + 9 6 r .
We note that:
∠ 2 A + ∠ 2 B + ∠ 2 C ∠ 2 A + ∠ 2 B sin ( ∠ 2 A + ∠ 2 B ) sin ∠ 2 A cos ∠ 2 B + sin ∠ 2 B cos ∠ 2 A r + 1 r − 1 × r + 4 4 r + r + 4 r − 4 × r + 1 2 r ( r + 1 ) ( r + 4 ) 4 r r − 4 4 + 2 r r − 8 r ( r + 1 ) ( r + 4 ) 6 r ( r − 2 ) ( r − 2 ) ( r + 9 ) r 2 + 7 r − 1 8 2 r ⟹ r = 9 0 ∘ = 9 0 ∘ − ∠ 2 C = sin ( 9 0 ∘ − ∠ 2 C ) = cos ∠ 2 C = r + 9 6 r = r + 9 6 r = r + 9 6 r = ( r + 1 ) ( r + 4 ) = r 2 + 5 r + 4 = 2 2 = 1 1