Tangent Circles

Geometry Level 3

In A B C \triangle ABC three circles are drawn such that they are tangent to two sides and the incircle. If the radii of the circles are 1, 4 and 9, find the inradius of the triangle.


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 18, 2017

Similar solution with @Chirag Baliga ,s

Let the triangle be A B C ABC and its incenter be I I and inradius be r r . We note that sin B 2 = I S I Q = r 4 r + 4 \sin \angle \frac B2 = \dfrac {IS}{IQ} = \dfrac {r-4}{r+4} , then cos B 2 = 1 ( r 4 ) 2 ( r + 4 ) 2 = 4 r r + 4 \cos \angle \frac B2 = \sqrt{1- \dfrac {(r-4)^2}{(r+4)^2}} = \dfrac {4\sqrt r}{r+4} . Similarly:

{ sin A 2 = r 1 r + 1 cos A 2 = 2 r r + 1 sin B 2 = r 4 r + 4 cos B 2 = 4 r r + 1 sin C 2 = r 9 r + 9 cos C 2 = 6 r r + 9 \begin{cases} \sin \angle \dfrac A2 = \dfrac {r-1}{r+1} & \implies \cos \angle \dfrac A2 = \dfrac {2\sqrt r}{r+1} \\ \sin \angle \dfrac B2 = \dfrac {r-4}{r+4} & \implies \cos \angle \dfrac B2 = \dfrac {4\sqrt r}{r+1} \\ \sin \angle \dfrac C2 = \dfrac {r-9}{r+9} & \implies \cos \angle \dfrac C2 = \dfrac {6\sqrt r}{r+9} \end{cases} .

We note that:

A 2 + B 2 + C 2 = 9 0 A 2 + B 2 = 9 0 C 2 sin ( A 2 + B 2 ) = sin ( 9 0 C 2 ) sin A 2 cos B 2 + sin B 2 cos A 2 = cos C 2 r 1 r + 1 × 4 r r + 4 + r 4 r + 4 × 2 r r + 1 = 6 r r + 9 4 r r 4 4 + 2 r r 8 r ( r + 1 ) ( r + 4 ) = 6 r r + 9 6 r ( r 2 ) ( r + 1 ) ( r + 4 ) = 6 r r + 9 ( r 2 ) ( r + 9 ) = ( r + 1 ) ( r + 4 ) r 2 + 7 r 18 = r 2 + 5 r + 4 2 r = 22 r = 11 \begin{aligned} \angle \frac A2 + \angle \frac B2 + \angle \frac C2 & = 90^\circ \\ \angle \frac A2 + \angle \frac B2 & = 90^\circ - \angle \frac C2 \\ \sin \left(\angle \frac A2 + \angle \frac B2\right) & = \sin \left(90^\circ - \angle \frac C2\right) \\ \sin \angle \frac A2 \cos \angle \frac B2 + \sin \angle \frac B2 \cos \angle \frac A2 & = \cos \angle \frac C2 \\ \frac {r-1}{r+1} \times \frac {4\sqrt r}{r+4} + \frac {r-4}{r+4} \times \frac {2\sqrt r}{r+1} & = \frac {6\sqrt r}{r+9} \\ \frac {4r\sqrt r - 4\sqrt 4 + 2r\sqrt r - 8 \sqrt r}{(r+1)(r+4)} & = \frac {6\sqrt r}{r+9} \\ \frac {6\sqrt r (r-2)}{(r+1)(r+4)} & = \frac {6\sqrt r}{r+9} \\ (r-2)(r+9) & = (r+1)(r+4) \\ r^2 +7r-18 & = r^2 + 5r + 4 \\ 2r & = 22 \\ \implies r & = \boxed{11} \end{aligned}

S O L U T I O N : SOLUTION:

In A B C \triangle ABC let I be the incentre. Let the circles with radii 1,4 and 9 have centres P , Q , R P , Q , R respectively.

I B D \angle IBD = I Q T \angle IQT = B 2 \frac{\angle B}{2}

Then sin B 2 \sin \frac{\angle B}{2} = r 4 r + 4 \frac{r - 4}{r+4}

So 1 - sin B 2 \sin \frac{\angle B}{2} = 8 r + 4 \frac{8}{r+4}

and 1+ sin B 2 \sin \frac{\angle B}{2} = 2 r r + 4 \frac{2r}{r+4}

So 1 sin B 2 1 + sin B 2 \dfrac{1 - \sin \frac{\angle B}{2}}{1 + \sin \frac{\angle B}{2}} = 4 r \frac{4}{r}

But LHS = ( cos B 4 sin B 4 cos B 4 + sin B 4 ) 2 \left(\dfrac{\cos\frac{\angle B}{4} - \sin \frac{\angle B}{4}}{ \cos \frac {\angle B}{4} + \sin \frac{\angle B}{4}}\right)^2 \Rightarrow ( 1 tan B 4 1 + tan B 4 ) 2 \left(\dfrac{1 - \tan \frac{\angle B}{4}}{1 + \tan \frac{\angle B}{4}}\right)^2

Which is equal to tan 2 ( π 4 B 4 ) \tan^2 (\frac{\pi}{4} - \frac{\angle B}{4}) . Therefore tan 2 ( π 4 B 4 ) \tan^2 (\frac{\pi}{4} - \frac{\angle B}{4}) = 4 r \frac{4}{r}

Similarly tan 2 ( π 4 A 4 ) \tan^2 (\frac{\pi}{4} - \frac{\angle A}{4}) .= 1 r \frac{1}{r}

and tan 2 ( π 4 C 4 ) \tan^2 (\frac{\pi}{4} - \frac{\angle C}{4}) . = 9 r \frac{9}{r}

( π 4 A 4 ) (\frac{\pi}{4} - \frac{\angle A}{4}) + ( π 4 B 4 ) (\frac{\pi}{4} - \frac{\angle B}{4}) + ( π 4 C 4 ) (\frac{\pi}{4} - \frac{\angle C}{4}) = π 2 \frac{\pi}{2}

Which implies tan ( π 4 A 4 ) \tan (\frac{\pi}{4} - \frac{\angle A}{4}) tan ( π 4 B 4 ) \tan (\frac{\pi}{4} - \frac{\angle B}{4}) + tan ( π 4 A 4 ) \tan (\frac{\pi}{4} - \frac{\angle A}{4}) tan ( π 4 C 4 ) \tan (\frac{\pi}{4} - \frac{\angle C}{4}) + tan ( π 4 B 4 ) \tan (\frac{\pi}{4} - \frac{\angle B}{4}) tan ( π 4 C 4 ) \tan (\frac{\pi}{4} - \frac{\angle C}{4}) = 1

Substituting the values we get

1 × 4 r 2 + 1 × 9 r 2 + 4 × 9 r 2 \sqrt \frac{1 \times 4}{r^2} + \sqrt \frac{1 \times 9}{r^2} + \sqrt \frac{4 \times 9}{r^2} = 1

2 r \frac{2}{r} + 3 r \frac{3}{r} + 6 r \frac{6}{r} = 1 \Rightarrow r = 11 r = \boxed {11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...