Tangent Lines of Implicit Functions

Calculus Level 3

Are there any points on the graph of the equation x 3 + y 3 = 3 x y 3 { x }^{ 3 }+{ y }^{ 3 }={ 3xy }-{ 3 } at which the tangent line is horizontal?

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tyler Walsh
Apr 5, 2017

x 3 + y 3 3 x y + 3 = 0 d y d x = 3 x 2 + 3 y 2 d y d x 3 y 3 x d y d x = 0 d y d x ( 3 y 2 3 x ) = 3 y 3 x 2 d y d x = 3 y 3 x 2 ( 3 y 2 3 x ) = y x 2 y 2 x 0 = y x 2 y 2 x 0 = y x 2 x 2 = y x 3 + ( x 2 ) 3 3 x ( x 2 ) + 3 = 0 ( x 3 ) 2 2 x 3 + 3 = 0 x 3 = 2 ± 4 12 2 = 2 ± 8 2 { x }^{ 3 }+{ y }^{ 3 }-{ 3xy }+{ 3 }={ 0 }\\ \frac { dy }{ dx } ={ 3x }^{ 2 }+{ 3y }^{ 2 }{ \frac { dy }{ dx } }-{ 3y }-{ 3x }\frac { dy }{ dx } ={ 0 }\\ \frac { dy }{ dx } ({ 3y }^{ 2 }-{ 3x })={ 3y }{ -3x }^{ 2 }\\ \frac { dy }{ dx } =\frac { { 3y }{ -3x }^{ 2 } }{ ({ 3y }^{ 2 }-{ 3x }) } =\frac { y-{ x }^{ 2 } }{ y^{ 2 }-x } \\ 0=\frac { y-{ x }^{ 2 } }{ y^{ 2 }-x } \\ 0=y-{ x }^{ 2 }\\ { x }^{ 2 }=y\\ { x }^{ 3 }+{ ({ x }^{ 2 }) }^{ 3 }-{ 3x({ x }^{ 2 }) }+{ 3 }={ 0 }\\ { ({ x }^{ 3 }) }^{ 2 }-{ 2x }^{ 3 }+{ 3 }=0\\ { x }^{ 3 }=\frac { 2\pm \sqrt { 4-12 } }{ 2 } =\frac { 2\pm \sqrt { -8 } }{ 2 }

No real solutions, therefore no horizontal tangents.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...