Tangent of integration - ظل التكامل

Level 2

ما الناتج إذا علمت أن نظام الزوايا هو النظام الدائري؟

What is the result given angular system is in radius?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 8, 2017

Let x = s i n ( u ) x = sin(u) and d x = c o s ( u ) d u dx = cos(u) du , 0 u π 2 . 0 \le u \le \frac{\pi}{2}. The above integral expression becomes:

t a n [ 0 π 2 1 s i n 2 ( u ) c o s ( u ) d u ] tan [\large{\int^{\frac{\pi}{2}}_{0} \sqrt{1 - sin^{2}(u)} cos(u) \, du}] ;

or t a n [ 0 π 2 c o s 2 ( u ) d u ] tan [\large{\int^{\frac{\pi}{2}}_{0} cos^{2}(u) \, du}] ;

or t a n [ 0 π 2 1 2 + 1 2 c o s ( 2 u ) d u ] tan [\large{\int^{\frac{\pi}{2}}_{0} \frac{1}{2} + \frac{1}{2} \cdot cos(2u) \, du}] ;

or t a n [ u 2 + 1 4 s i n ( 2 u ) ] tan [\frac{u}{2} + \frac{1}{4} \cdot sin(2u)] , 0 u π 2 0 \le u \le \frac{\pi}{2} ;

or t a n ( π 4 ) tan(\frac{\pi}{4}) ;

or 1 . \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...