Tangent Product series! -2

Geometry Level 3

log 2 ( ( 1 + tan 1 ° ) ( 1 + tan 2 ° ) ( 1 + tan 3 ° ) . . . ( 1 + tan 45 ° ) ) = ? \log_{2}((1+\tan1\degree)(1+\tan2\degree)(1+\tan3\degree)...(1+\tan45\degree))=?

Inspiration


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 22, 2020

Consider the product:

P = ( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 3 ) ( 1 + tan 4 5 ) = ( 1 + sin 1 cos 1 ) ( 1 + sin 2 cos 2 ) ( 1 + sin 3 cos 3 ) ( 1 + sin 4 5 cos 4 5 ) = ( cos 1 + sin 1 cos 1 ) ( cos 2 + sin 2 cos 2 ) ( cos 3 + sin 3 cos 3 ) ( cos 4 5 + sin 4 5 cos 4 5 ) = 2 cos 4 4 cos 1 2 cos 4 3 cos 2 2 cos 4 2 cos 3 2 cos 1 cos 4 4 2 cos 0 cos 4 5 = ( 2 ) 45 cos 4 5 = 2 23 \begin{aligned} P & = (1+\tan 1^\circ) (1+\tan 2^\circ) (1+\tan 3^\circ) \cdots (1+\tan 45^\circ) \\ & = \left(1 + \frac {\sin 1^\circ}{\cos 1^\circ} \right)\left(1 + \frac {\sin 2^\circ}{\cos 2^\circ} \right)\left(1 + \frac {\sin 3^\circ}{\cos 3^\circ} \right)\cdots \left(1 + \frac {\sin 45^\circ}{\cos 45^\circ} \right) \\ & = \left(\frac {\cos 1^\circ + \sin 1^\circ}{\cos 1^\circ} \right) \left(\frac {\cos 2^\circ + \sin 2^\circ}{\cos 2^\circ} \right) \left(\frac {\cos 3^\circ + \sin 3^\circ}{\cos 3^\circ} \right) \cdots \left(\frac {\cos 45^\circ + \sin 45^\circ}{\cos 45^\circ} \right) \\ & = \frac {\sqrt 2 \cancel{\cos 44^\circ}}{\cancel{\cos 1^\circ}} \cdot \frac {\sqrt 2 \cancel{\cos 43^\circ}}{\cancel{\cos 2^\circ}} \cdot \frac {\sqrt 2 \cancel{\cos 42^\circ}}{\cancel{\cos 3^\circ}} \cdots \frac {\sqrt 2 \cancel{\cos 1^\circ}}{\cancel{\cos 44^\circ}} \cdot \frac {\sqrt 2 \cos 0^\circ}{\cos 45^\circ} \\ & = \frac {(\sqrt 2)^{45}}{\cos 45^\circ} = 2^{23} \end{aligned}

Therefore log 2 P = 23 \log_2 P = \boxed {23} .

The trigonometric identity, that if A+B=45, then (1+tanA) (1+tanB)=2 can help here.

We can rearrange the interior part as follows to use the identity: (1+tan1) (1+tan44) (1+tan2) (1+tan43) ... (1+tan45)

We can thus form 22 pairs of this, as there are 44 terms which can be paired to use the identity leaving (1+tan45).

Thus, the equation will be simplified as 2 x 2 x 2 x 2 x 2 ...2 x (1+tan45) Here 2 gets multiplied to itself 22 times, as there are 22 pairs \boxed{\text{Here 2 gets multiplied to itself 22 times, as there are 22 pairs}}

The value of tan 45=1 and substituting this value in the equation and writing the continued 2's exponent form, we get,

2 22 { 2 }^{ 22 } x (1+1)

2 22 { 2 }^{ 22 } x 2

Simplifying further using the law of exponents,

2 23 { 2 }^{ 23 }

Now bringing the logarithm part back,

log 2 2 23 \log _{ 2 }{ { 2 }^{ 23 } }

  • Thus, the answer is 23 \boxed{23}
Zakir Husain
Jul 24, 2020

Let the product inside the parentheses of logarithm function be P P P = ( 1 + tan 1 ° ) ( 1 + tan 2 ° ) . . . ( 1 + tan 45 ° ) = ( 1 + tan 0 ° ) ( 1 + tan 1 ° ) ( 1 + tan 2 ° ) . . . ( 1 + tan 45 ° ) P=(1+\tan1\degree)(1+\tan2\degree)...(1+\tan45\degree)=(1+\tan0\degree)(1+\tan1\degree)(1+\tan2\degree)...(1+\tan45\degree) P = ( 1 + tan 0 ° ) ( 1 + tan 45 ° ) × ( 1 + tan 1 ° ) ( 1 + tan 44 ° ) . . . P=(1+\tan0\degree)(1+\tan45\degree)\times (1+\tan1\degree)(1+\tan44\degree)... tan 0 ° = 0 ( 1 + tan 0 ° ) = 1 \blue{\because \tan0\degree=0\Rightarrow (1+\tan0\degree)=1} ( 1 + tan 0 ° ) ( 1 + tan 1 ° ) ( 1 + tan 2 ° ) . . . ( 1 + tan 45 ° ) = 1 × ( 1 + tan 1 ° ) ( 1 + tan 2 ° ) . . . ( 1 + tan 45 ° ) = P \blue{\Rightarrow (1+\tan0\degree)(1+\tan1\degree)(1+\tan2\degree)...(1+\tan45\degree)=1\times (1+\tan1\degree)(1+\tan2\degree)...(1+\tan45\degree)=P} Now using a identity (proved below) ; ( 1 + tan ( 45 ° x ) ) ( 1 + tan x ) = 2 \boxed{(1+\tan(45\degree-x))(1+\tan x)=2}

tan ( 45 ° x ) + 1 = 1 tan x 1 + tan x + 1 = 1 tan x + 1 + tan x 1 + tan x = 2 1 + tan x \tan(45\degree-x)+1=\dfrac{1-\tan x}{1+\tan x}+1=\dfrac{1\cancel{-\tan x}+1\cancel{+\tan x}}{1+\tan x}=\dfrac{2}{1+\tan x} tan ( 45 ° x ) + 1 = 2 1 + tan x \Rightarrow\tan(45\degree-x)+1=\dfrac{2}{1+\tan x} Multiplying both sides by 1 + tan x 1+\tan x ( 1 + tan ( 45 ° x ) ) ( 1 + tan x ) = 2 (1+\tan(45\degree-x))(1+\tan x)=2

P = 2 × 2 × 2... × 2 = 2 46 2 = 2 23 \Rightarrow P=2\times2\times2...\times2=2^\frac{46}{2}=2^{23} log 2 P = 23 \Rightarrow \log_2P=\boxed{23}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...