Tangent ratio

Geometry Level 3

In A B C \triangle ABC , the corresponding side lengths opposite angles A A , B B , and C C are a a , b b , and c c respectively. If a cos B b cos A = 3 5 c a\cos B-b\cos A=\dfrac{3}{5}c , find the value of tan A tan B \dfrac{\tan A}{\tan B} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

According to the Extended Sine Rule , a = 2 R sin A b = 2 R sin B c = 2 R sin C a=2R \sin A \ \ \ \ \ b=2R \sin B \ \ \ \ \ c=2R \sin C where R R is the circumradius of A B C \triangle ABC .

Hence we have

a cos B b cos A = 3 5 c 2 R sin A cos B 2 R sin B cos A = 3 5 2 R sin C sin A cos B sin B cos A = 3 5 sin C sin A cos B sin B cos A = 3 5 sin ( A + B ) sin A cos B sin B cos A = 3 5 ( sin A cos B + sin B cos A ) 2 sin A cos B = 8 sin B cos A sin A cos B sin B cos A = 4 tan A tan B = 4 \begin{aligned} a\cos B-b\cos A=\dfrac{3}{5}c & \Leftrightarrow 2R\sin A\cos B-2R\sin B\cos A=\dfrac{3}{5}2R\sin C \\ & \Leftrightarrow \sin A\cos B-\sin B\cos A=\dfrac{3}{5}\sin C \\ & \Leftrightarrow \sin A\cos B-\sin B\cos A=\dfrac{3}{5}\sin \left( A+B \right) \\ & \Leftrightarrow \sin A\cos B-\sin B\cos A=\dfrac{3}{5}\left( \sin A\cos B+\sin B\cos A \right) \\ & \Leftrightarrow 2\sin A\cos B=8\sin B\cos A \\ & \Leftrightarrow \dfrac{\sin A\cos B}{\sin B\cos A}=4 \\ & \Leftrightarrow \dfrac{\tan A}{\tan B}=\boxed{4} \\ \end{aligned}

From the Projection Formula :

c c = a cos B + b cos A a\cos{B} + b\cos{A}

3 5 c \frac{3}{5} c = a cos B b cos A a\cos{B} -b\cos{A}

Thus we get a cos B a\cos{B} = 4 5 c \frac{4}{5} c and b cos A b\cos{A} = 1 5 c \frac{1}{5} c

Thus

tan A tan B \frac{\tan{A}}{\tan{B}} = sin A sin B \frac{\sin{A}}{\sin{B}} . cos B cos A \frac{\cos{B}}{\cos{A}}

= a b \frac{ \cancel{a}}{\cancel{b}} . a cos B b cos A \frac{a\cos{B}}{b\cos{A}} . b a \frac{\cancel{b}}{\cancel{a}} [ From Law of Sines, sin A sin B \frac{\sin{A}}{\sin{B}} = a b \frac{a}{b} ]

= 4 c 5 c 5 \frac{\frac{4c}{5}}{\frac{c}{5}}

= 4 4

Agent T
May 3, 2021

Ik I've a beautiful handwriting:P Ik I've a beautiful handwriting:P

David Vreken
May 4, 2021

By the law of cosines, cos A = b 2 + c 2 a 2 2 b c \cos A = \cfrac{b^2 + c^2 - a^2}{2bc} and cos B = a 2 + c 2 b 2 2 a c \cos B = \cfrac{a^2 + c^2 - b^2}{2ac} .

Substituting these into a cos B b cos A = 3 5 c a \cos B - b \cos A = \cfrac{3}{5}c gives a a 2 + c 2 b 2 2 a c b b 2 + c 2 a 2 2 b c = 3 5 c a \cdot \cfrac{a^2 + c^2 - b^2}{2ac} - b \cdot \cfrac{b^2 + c^2 - a^2}{2bc} = \cfrac{3}{5}c , which simplifies to a 2 b 2 = 3 5 c 2 a^2 - b^2 = \cfrac{3}{5}c^2 .

Substituting a 2 b 2 = 3 5 c 2 a^2 - b^2 = \cfrac{3}{5}c^2 back into cos A \cos A and cos B \cos B gives cos A = c 2 3 5 c 2 2 b c = c 5 b \cos A = \cfrac{c^2 - \frac{3}{5}c^2}{2bc} = \cfrac{c}{5b} and cos B = c 2 + 3 5 c 2 2 a c = 4 c 5 a \cos B = \cfrac{c^2 + \frac{3}{5}c^2}{2ac} = \cfrac{4c}{5a} , so cos B cos A = 4 c 5 a c 5 b = 4 b a \cfrac{\cos B}{\cos A} = \cfrac{\frac{4c}{5a}}{\frac{c}{5b}} = \cfrac{4b}{a} .

By the law of sines, sin A sin B = a b \cfrac{\sin A}{\sin B} = \cfrac{a}{b} .

Therefore, tan A tan B = sin A sin B cos B cos A = a b 4 b a = 4 \cfrac{\tan A}{\tan B} = \cfrac{\sin A}{\sin B} \cdot \cfrac{\cos B}{\cos A} = \cfrac{a}{b} \cdot \cfrac{4b}{a} = \boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...