In △ A B C , the corresponding side lengths opposite angles A , B , and C are a , b , and c respectively. If a cos B − b cos A = 5 3 c , find the value of tan B tan A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From the Projection Formula :
c = a cos B + b cos A
5 3 c = a cos B − b cos A
Thus we get a cos B = 5 4 c and b cos A = 5 1 c
Thus
tan B tan A = sin B sin A . cos A cos B
= b a . b cos A a cos B . a b [ From Law of Sines, sin B sin A = b a ]
= 5 c 5 4 c
= 4
By the law of cosines, cos A = 2 b c b 2 + c 2 − a 2 and cos B = 2 a c a 2 + c 2 − b 2 .
Substituting these into a cos B − b cos A = 5 3 c gives a ⋅ 2 a c a 2 + c 2 − b 2 − b ⋅ 2 b c b 2 + c 2 − a 2 = 5 3 c , which simplifies to a 2 − b 2 = 5 3 c 2 .
Substituting a 2 − b 2 = 5 3 c 2 back into cos A and cos B gives cos A = 2 b c c 2 − 5 3 c 2 = 5 b c and cos B = 2 a c c 2 + 5 3 c 2 = 5 a 4 c , so cos A cos B = 5 b c 5 a 4 c = a 4 b .
By the law of sines, sin B sin A = b a .
Therefore, tan B tan A = sin B sin A ⋅ cos A cos B = b a ⋅ a 4 b = 4 .
Problem Loading...
Note Loading...
Set Loading...
According to the Extended Sine Rule , a = 2 R sin A b = 2 R sin B c = 2 R sin C where R is the circumradius of △ A B C .
Hence we have
a cos B − b cos A = 5 3 c ⇔ 2 R sin A cos B − 2 R sin B cos A = 5 3 2 R sin C ⇔ sin A cos B − sin B cos A = 5 3 sin C ⇔ sin A cos B − sin B cos A = 5 3 sin ( A + B ) ⇔ sin A cos B − sin B cos A = 5 3 ( sin A cos B + sin B cos A ) ⇔ 2 sin A cos B = 8 sin B cos A ⇔ sin B cos A sin A cos B = 4 ⇔ tan B tan A = 4