Tangent , sine and cosine!

Level 2

If sin θ + cos θ = 1 5 \sin \theta + \cos \theta = \dfrac{1}{5} and θ π 2 \theta \neq \dfrac{π}{2} , what is tan θ \tan \theta ?

7 2 -\dfrac{7}{2} or 2 7 -\dfrac{2}{7} 13 12 -\dfrac{13}{12} or 12 13 -\dfrac{12}{13} 3 4 -\dfrac{3}{4} or 4 3 -\dfrac{4}{3} 4 5 -\dfrac{4}{5} or 5 4 -\dfrac{5}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 22, 2018

sin θ + cos θ = 1 5 Divide both sides by cos θ . tan θ + 1 = sec θ 5 Multiply both sides by 5. 5 tan θ + 5 = sec θ Squaring both sides 25 tan 2 θ + 50 tan θ + 25 = sec 2 θ 25 tan 2 θ + 50 tan θ + 25 = tan 2 θ + 1 24 tan 2 θ + 50 tan θ + 24 = 0 12 tan 2 θ + 25 tan θ + 12 = 0 ( 3 tan θ + 4 ) ( 4 tan θ + 3 ) = 0 \begin{aligned} \sin \theta + \cos \theta & = \frac 15 & \small \color{#3D99F6} \text{Divide both sides by }\cos \theta. \\ \tan \theta + 1 & = \frac {\sec \theta}5 & \small \color{#3D99F6} \text{Multiply both sides by }5. \\ 5\tan \theta + 5 & = \sec \theta & \small \color{#3D99F6} \text{Squaring both sides} \\ 25\tan^2 \theta + 50\tan \theta + 25 & = \sec^2 \theta \\ 25\tan^2 \theta + 50\tan \theta + 25 & = \tan^2 \theta + 1 \\ 24\tan^2 \theta + 50\tan \theta + 24 & = 0 \\ 12\tan^2 \theta + 25\tan \theta + 12 & = 0 \\ (3\tan \theta + 4)(4\tan \theta +3) & = 0 \end{aligned}

θ = 3 4 or 4 3 \implies \theta = \boxed{- \dfrac 34 \text{ or } - \dfrac 43}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...