If tan 2 1 2 ° , tan 2 2 4 ° , tan 2 4 8 ° , and tan 2 9 6 ° are roots of the polynomial f ( x ) = x 4 + A x 3 + B x 2 + C x + D , find A + B + C + D .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that f ( 1 ) = 1 + A + B + C + D and that f ( x ) = ( x − tan 2 1 2 ∘ ) ( x − tan 2 2 4 ∘ ) ( x − tan 2 4 8 ∘ ) ( x − tan 2 9 6 ∘ ) . So plugging in x = 1 gives f ( 1 ) = 1 6 . Subtracting 1 from that gives the answer of 1 5
This is not what I intended but this solution is still brilliant!
Problem Loading...
Note Loading...
Set Loading...
Because f ( 1 ) = A + B + C + D + 1 = ( 1 − tan 2 ( 1 2 ∘ ) ) ( 1 − tan 2 ( 2 4 ∘ ) ) ( 1 − tan 2 ( 4 8 ∘ ) ) ( 1 − tan 2 ( 9 6 ∘ ) ) .
Also, by double angle identity, 1 − tan 2 ( X ) = cos 2 ( X ) cos 2 ( X ) − sin 2 ( X ) = cos 2 ( X ) cos ( 2 X ) . Then,
A + B + C + D + 1 0 0 = = = cos 2 ( 1 2 ∘ ) cos ( 2 4 ∘ ) ⋅ cos 2 ( 2 4 ∘ ) cos ( 4 8 ∘ ) ⋅ cos 2 ( 4 8 ∘ ) cos ( 9 6 ∘ ) ⋅ cos 2 ( 9 6 ∘ ) cos ( 1 9 2 ∘ ) cos 2 ( 1 2 ∘ ) cos ( 2 4 ∘ ) cos ( 4 8 ∘ ) cos ( 9 6 ∘ ) − cos ( 1 2 ∘ ) − cos ( 1 2 ∘ ) cos ( 2 4 ∘ ) cos ( 4 8 ∘ ) cos ( 9 6 ∘ ) 1
Also, with sin ( 2 X ) = 2 sin ( X ) cos ( X ) .
Multiplying the expression above by 1 6 sin ( 1 2 ∘ ) sin ( 2 4 ∘ ) cos ( 4 8 ∘ ) cos ( 9 6 ∘ ) 1 6 sin ( 1 2 ∘ ) sin ( 2 4 ∘ ) cos ( 4 8 ∘ ) cos ( 9 6 ∘ ) simplifies to A + B + C + D + 1 = 1 6 .
The answer is 1 6 − 1 = 1 5 .