Tangent Tango

Geometry Level 3

If tan 2 12 ° \tan^2 12° , tan 2 24 ° \tan^2 24° , tan 2 48 ° \tan^2 48° , and tan 2 96 ° \tan^2 96° are roots of the polynomial f ( x ) = x 4 + A x 3 + B x 2 + C x + D f(x) = x^4 + Ax^3 + Bx^2 + Cx + D , find A + B + C + D A + B + C + D .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Nov 4, 2020

Because f ( 1 ) = A + B + C + D + 1 = ( 1 tan 2 ( 1 2 ) ) ( 1 tan 2 ( 2 4 ) ) ( 1 tan 2 ( 4 8 ) ) ( 1 tan 2 ( 9 6 ) ) f(1) = A + B + C + D + 1 = (1 - \tan^2(12^\circ))(1 - \tan^2(24^\circ))(1 - \tan^2(48^\circ))(1 - \tan^2(96^\circ)) .

Also, by double angle identity, 1 tan 2 ( X ) = cos 2 ( X ) sin 2 ( X ) cos 2 ( X ) = cos ( 2 X ) cos 2 ( X ) 1- \tan^2 (X) = \frac{\cos^2 (X) - \sin^2(X)}{\cos^2(X)} = \frac{\cos(2X)}{\cos^2(X)} . Then,

A + B + C + D + 1 = cos ( 2 4 ) cos 2 ( 1 2 ) cos ( 4 8 ) cos 2 ( 2 4 ) cos ( 9 6 ) cos 2 ( 4 8 ) cos ( 19 2 ) cos 2 ( 9 6 ) 0 = cos ( 1 2 ) cos 2 ( 1 2 ) cos ( 2 4 ) cos ( 4 8 ) cos ( 9 6 ) 0 = 1 cos ( 1 2 ) cos ( 2 4 ) cos ( 4 8 ) cos ( 9 6 ) \begin{array} {r c l} A + B + C + D + 1 & =& \dfrac{\cos(24^\circ)}{\cos^2(12^\circ)} \cdot \dfrac{\cos(48^\circ)}{\cos^2(24^\circ)} \cdot \dfrac{\cos(96^\circ)}{\cos^2(48^\circ)} \cdot \dfrac{\cos(192^\circ)}{\cos^2(96^\circ)} \\ \phantom0\\ &=& \dfrac{-\cos(12^\circ)}{\cos^2(12^\circ) \cos(24^\circ) \cos(48^\circ) \cos(96^\circ)} \\ \phantom0\\ &=& -\dfrac{1}{\cos(12^\circ) \cos(24^\circ) \cos(48^\circ) \cos(96^\circ)} \end{array}

Also, with sin ( 2 X ) = 2 sin ( X ) cos ( X ) \sin(2X) = 2\sin(X) \cos(X) .

Multiplying the expression above by 16 sin ( 1 2 ) sin ( 2 4 ) cos ( 4 8 ) cos ( 9 6 ) 16 sin ( 1 2 ) sin ( 2 4 ) cos ( 4 8 ) cos ( 9 6 ) \dfrac{16\sin(12^\circ) \sin(24^\circ) \cos(48^\circ) \cos(96^\circ)}{16\sin(12^\circ) \sin(24^\circ) \cos(48^\circ) \cos(96^\circ)} simplifies to A + B + C + D + 1 = 16 A+B+C+D+1=16 .

The answer is 16 1 = 15 . 16 - 1 =\boxed{15} .

Hosam Hajjir
Nov 4, 2020

Note that f ( 1 ) = 1 + A + B + C + D f(1) = 1 + A + B + C + D and that f ( x ) = ( x tan 2 1 2 ) ( x tan 2 2 4 ) ( x tan 2 4 8 ) ( x tan 2 9 6 ) f(x) = (x - \tan^2 12^{\circ} )(x - \tan^2 24^{\circ} )(x - \tan^2 48^{\circ} )(x - \tan^2 96^{\circ} ) . So plugging in x = 1 x = 1 gives f ( 1 ) = 16 f(1) = 16 . Subtracting 1 1 from that gives the answer of 15 \boxed{15}

This is not what I intended but this solution is still brilliant!

David Vreken - 7 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...