cos ( 3 × 2 ∘ ) sin 2 ∘ + cos ( 3 2 × 2 ∘ ) sin ( 3 × 2 ∘ ) + cos ( 3 3 × 2 ∘ ) sin ( 3 2 × 2 ∘ ) + ⋯ + cos ( 3 1 0 × 2 ∘ ) sin ( 3 9 × 2 ∘ )
If the expression above can be expressed as 2 1 ( tan α ∘ − tan β ∘ ) , where α and β are positive integers , find the minimum value of α + β .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We're essentially calculating the sum S : = n = 0 ∑ 9 cos ( 3 n + 1 ⋅ y ∘ ) sin ( 3 n ⋅ y ∘ ) , where y = 2 . Since it is hinted that this sum has a closed form of 2 1 ( tan α − tan β ) , this suggests that S might be expressed as f ( m ) − f ( m − k ) = ( f ( m ) − f ( m − 1 ) ) + ( f ( m − 1 ) + f ( m − 2 ) ) + ( f ( m − 2 ) + f ( m − 3 ) ) + ⋯ + ( f ( m − k + 1 ) − f ( m − k ) ) , so S could possibly be expressed as a telescoping sum and we wish to determine the function f ( m ) .
In other words, we want to find A and B satisfying the trigonometric identity cos 3 x sin x = 2 1 ( tan A − tan B ) . If we substitute x as some common values, like say 4 5 ∘ , 6 0 ∘ , 1 2 0 ∘ , we can see that the trigonometric identity holds true when A = 3 x , B = x , this suggests that
cos 3 x sin x = 2 1 ( tan 3 x − tan x )
is a trigonometric identity. To make sure our assumption is correct, we need to prove that it is true first.
Claim : cos 3 x sin x = 2 1 ( tan 3 x − tan x ) is a trigonometric identity.
Proof : Proving this identity is equivalent to proving that 2 sin x = cos 3 x ( tan 3 x − tan x ) is true.
Looking at the RHS, we have cos 3 x ( tan 3 x − tan x ) = sin 3 x − tan x cos 3 x . By triple angle identities , we know that
sin ( 3 x ) = − 4 sin 3 x + 3 sin x cos ( 3 x ) = 4 cos 3 x − 3 cos x
Then, R H S = = = = = = sin 3 x − tan x cos 3 x ( − 4 sin 3 + 3 sin x ) + cos x sin x ( 4 cos 3 x − 3 cos x ) − 4 sin 3 + 3 sin x + 4 cos 3 x sin x + 3 sin x 6 sin x − 4 sin x ( cos 2 x + sin 2 x ) 6 sin x − 4 sin x ( 1 ) 2 sin x = L H S ■
Now back to the sum, we now know that S can also be expressed as n = 0 ∑ 9 2 1 [ tan ( 3 n + 1 y ∘ ) − tan ( 3 n y ∘ ) ] = 2 1 n = 0 ∑ 9 [ f ( m + 1 ) − f ( m ) ] , where f ( m ) = tan ( 3 m ⋅ y ∘ ) . This clearly shows that S telescopes and is equal to:
S = 2 1 [ f ( 1 0 ) − f ( 0 ) ] = 2 1 [ tan ( 3 1 0 ⋅ y ∘ ) − tan ( y ∘ ) ] = 2 1 [ tan ( 3 1 0 ⋅ 2 ∘ ) − tan 2 ∘ ] .
Since we want to minimize the sum of angles α and β , then we need to find the minimum positive integers of α and β such that tan α = tan ( 3 1 0 ⋅ 2 ∘ ) and tan β = tan 2 .
It is obvious that min ( β ) = 2 . And since g ( x ) = tan x is a periodic function with a fundamental period of 1 8 0 ∘ , then min ( α ) = ( 3 1 0 ⋅ 2 ) m o d 1 8 0 = 1 8 .
Our answer is min ( α ) + min ( β ) = 1 8 + 2 = 2 0 .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving
The question is of the form cos ( 3 1 x ) ° sin ( 3 0 x ) ° + cos ( 3 2 x ) ° sin ( 3 1 x ) ° + cos ( 3 3 ) x ° sin ( 3 2 x ) ° + ⋯ + cos ( 3 n x ) ° sin ( 3 n − 1 x ) ° where x = 2 .
cos ( 3 1 x ) ° sin ( 3 0 x ) ° + cos ( 3 2 x ) ° sin ( 3 1 x ) ° + cos ( 3 3 x ) ° sin ( 3 2 x ) ° + ⋯ + cos ( 3 n x ) ° sin ( 3 n − 1 x ) ° = 2 1 × 2 ( cos ( 3 1 x ) ° sin ( 3 0 x ) ° + cos ( 3 2 x ) ° sin ( 3 1 x ) ° + cos ( 3 3 x ) ° sin ( 3 2 x ) ° + ⋯ + cos ( 3 n x ) ° sin ( 3 n − 1 x ) ° ) = 2 1 ( cos ( 3 1 x ) ° 2 sin ( 3 0 x ) ° + cos ( 3 2 x ) ° 2 sin ( 3 1 x ) ° + cos ( 3 3 x ) ° 2 sin ( 3 2 x ) ° + ⋯ + cos ( 3 n x ) ° 2 sin ( 3 n − 1 x ) ° ) = 2 1 ( cos ( 3 1 x ) ° cos ( 3 0 x ) ° 2 × sin ( 3 0 x ) ° cos ( 3 0 x ) ° + cos ( 3 2 x ) ° cos ( 3 1 x ) ° 2 sin ( 3 1 x ) ° cos ( 3 1 x ) ° + cos ( 3 3 x ) ° cos ( 3 2 x ) ° 2 sin ( 3 2 ) ° cos ( 3 2 x ) ° + ⋯ + cos ( 3 n x ) ° cos ( 3 n − 1 x ) ° 2 sin ( 3 n − 1 x ) ° cos ( 3 n − 1 x ) ° ) = 2 1 ( cos ( 3 1 x ) ° cos ( 3 2 x ) ° sin ( 2 × 3 0 x ) ° + cos ( 3 2 x ) ° cos ( 3 1 x ) ° sin ( 2 × 3 1 x ) ° + cos ( 3 3 x ) ° cos ( 3 2 x ) ° sin ( 2 × 3 2 x ) ° ⋯ cos ( 3 n x ) ° cos ( 3 n − 1 x ) ° sin ( 2 × 3 n − 1 x ) ° ) = 2 1 ( cos ( 3 1 x ) ° cos ( 3 2 x ) ° sin ( 3 1 x − 3 0 x ) ° + cos ( 3 2 x ) ° cos ( 3 1 x ) ° sin ( 3 2 x − 3 1 x ) ° + cos ( 3 3 x ) ° cos ( 3 2 x ) ° sin ( 3 3 x − 3 2 x ) ° ⋯ cos ( 3 n x ) ° cos ( 3 n − 1 x ) ° sin ( 3 n x − 3 n − 1 x ) ° ) = 2 1 ( cos ( 3 1 x ) ° cos ( 3 0 x ) ° sin ( 3 1 x ) ° cos ( 3 0 x ) ° − sin ( 3 0 x ) ° cos ( 3 1 x ) ° + cos ( 3 2 x ) ° cos ( 3 1 x ) ° sin ( 3 2 x ) ° cos ( 3 1 x ) ° − sin ( 3 1 x ) ° cos ( 3 1 x ) ° + cos ( 3 3 x ) ° cos ( 3 2 x ) ° sin ( 3 3 x ) ° cos ( 3 2 x ) ° − sin ( 3 2 x ) ° cos ( 3 3 x ) ° + ⋯ + cos ( 3 n x ) ° cos ( 3 n − 1 x ) ° sin ( 3 n x ) ° cos ( 3 n − 1 x ) ° − sin ( 3 n − 1 x ) ° cos ( 3 n x ) ° ) = 2 1 ( tan ( 3 1 x ) ° − tan ( 3 0 x ) ° + tan ( 3 2 x ) ° − tan ( 3 1 x ) ° + tan ( 3 3 x ) ° − tan ( 3 2 x ) ° + ⋯ + tan ( 3 n x ) ° − tan ( 3 n − 1 x ) ° ) = 2 1 ( tan ( 3 n x ) ° − tan ( 3 0 x ) ° ) = 2 1 ( tan ( 3 n x ) ° − tan x ° )
So, plugging in the x = 2 and substituting 3 n = 5 9 0 4 9 , we get:-
cos 6 ° sin 2 ° + cos 1 8 ° sin 6 ° + cos 5 4 ° sin 1 8 ° + cos 1 6 2 ° sin 5 4 ° + ⋯ cos 1 1 8 0 9 8 ° sin 3 9 3 6 6 ° ⟹ α = 1 8 ° ∴ α + β = 2 1 ( tan 1 1 8 0 9 8 ° − tan 2 ° ) = 2 1 ( tan ( 1 8 ) ° − tan ( 2 ) ° ) ( and ) β = 2 ° = 1 8 + 2 = 2 0