Everything Just Disappear?

Geometry Level 5

sin 2 cos ( 3 × 2 ) + sin ( 3 × 2 ) cos ( 3 2 × 2 ) + sin ( 3 2 × 2 ) cos ( 3 3 × 2 ) + + sin ( 3 9 × 2 ) cos ( 3 10 × 2 ) \large \dfrac{\sin 2^\circ}{\cos(3\times2^\circ)} + \dfrac{\sin(3\times 2^\circ)}{\cos (3^2\times2^\circ) } + \dfrac{\sin(3^2\times 2^\circ)}{\cos (3^3\times2^\circ) } + \cdots + \dfrac{\sin(3^9\times 2^\circ)}{\cos (3^{10}\times2^\circ) }

If the expression above can be expressed as 1 2 ( tan α tan β ) \dfrac12 (\tan\alpha^\circ - \tan\beta^\circ ) , where α \alpha and β \beta are positive integers , find the minimum value of α + β \alpha + \beta .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Menon
Jun 27, 2016

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

The question is of the form sin ( 3 0 x ) ° cos ( 3 1 x ) ° + sin ( 3 1 x ) ° cos ( 3 2 x ) ° + sin ( 3 2 x ) ° cos ( 3 3 ) x ° + + sin ( 3 n 1 x ) ° cos ( 3 n x ) ° \dfrac{\sin {(3^0x)}^°}{\cos {(3^1x)}^°} + \dfrac{\sin {(3^1x)}^°}{\cos {(3^2x)}^°} + \dfrac{\sin {(3^2x)}^°}{\cos {(3^3)x}^°} + \cdots + \dfrac{\sin {(3^{n-1}x)}^°}{\cos {(3^nx)}^°} where x = 2 x=2 .

sin ( 3 0 x ) ° cos ( 3 1 x ) ° + sin ( 3 1 x ) ° cos ( 3 2 x ) ° + sin ( 3 2 x ) ° cos ( 3 3 x ) ° + + sin ( 3 n 1 x ) ° cos ( 3 n x ) ° = 1 2 × 2 ( sin ( 3 0 x ) ° cos ( 3 1 x ) ° + sin ( 3 1 x ) ° cos ( 3 2 x ) ° + sin ( 3 2 x ) ° cos ( 3 3 x ) ° + + sin ( 3 n 1 x ) ° cos ( 3 n x ) ° ) = 1 2 ( 2 sin ( 3 0 x ) ° cos ( 3 1 x ) ° + 2 sin ( 3 1 x ) ° cos ( 3 2 x ) ° + 2 sin ( 3 2 x ) ° cos ( 3 3 x ) ° + + 2 sin ( 3 n 1 x ) ° cos ( 3 n x ) ° ) = 1 2 ( 2 × sin ( 3 0 x ) ° cos ( 3 0 x ) ° cos ( 3 1 x ) ° cos ( 3 0 x ) ° + 2 sin ( 3 1 x ) ° cos ( 3 1 x ) ° cos ( 3 2 x ) ° cos ( 3 1 x ) ° + 2 sin ( 3 2 ) ° cos ( 3 2 x ) ° cos ( 3 3 x ) ° cos ( 3 2 x ) ° + + 2 sin ( 3 n 1 x ) ° cos ( 3 n 1 x ) ° cos ( 3 n x ) ° cos ( 3 n 1 x ) ° ) = 1 2 ( sin ( 2 × 3 0 x ) ° cos ( 3 1 x ) ° cos ( 3 2 x ) ° + sin ( 2 × 3 1 x ) ° cos ( 3 2 x ) ° cos ( 3 1 x ) ° + sin ( 2 × 3 2 x ) ° cos ( 3 3 x ) ° cos ( 3 2 x ) ° sin ( 2 × 3 n 1 x ) ° cos ( 3 n x ) ° cos ( 3 n 1 x ) ° ) = 1 2 ( sin ( 3 1 x 3 0 x ) ° cos ( 3 1 x ) ° cos ( 3 2 x ) ° + sin ( 3 2 x 3 1 x ) ° cos ( 3 2 x ) ° cos ( 3 1 x ) ° + sin ( 3 3 x 3 2 x ) ° cos ( 3 3 x ) ° cos ( 3 2 x ) ° sin ( 3 n x 3 n 1 x ) ° cos ( 3 n x ) ° cos ( 3 n 1 x ) ° ) = 1 2 ( sin ( 3 1 x ) ° cos ( 3 0 x ) ° sin ( 3 0 x ) ° cos ( 3 1 x ) ° cos ( 3 1 x ) ° cos ( 3 0 x ) ° + sin ( 3 2 x ) ° cos ( 3 1 x ) ° sin ( 3 1 x ) ° cos ( 3 1 x ) ° cos ( 3 2 x ) ° cos ( 3 1 x ) ° + sin ( 3 3 x ) ° cos ( 3 2 x ) ° sin ( 3 2 x ) ° cos ( 3 3 x ) ° cos ( 3 3 x ) ° cos ( 3 2 x ) ° + + sin ( 3 n x ) ° cos ( 3 n 1 x ) ° sin ( 3 n 1 x ) ° cos ( 3 n x ) ° cos ( 3 n x ) ° cos ( 3 n 1 x ) ° ) = 1 2 ( tan ( 3 1 x ) ° tan ( 3 0 x ) ° + tan ( 3 2 x ) ° tan ( 3 1 x ) ° + tan ( 3 3 x ) ° tan ( 3 2 x ) ° + + tan ( 3 n x ) ° tan ( 3 n 1 x ) ° ) = 1 2 ( tan ( 3 n x ) ° tan ( 3 0 x ) ° ) = 1 2 ( tan ( 3 n x ) ° tan x ° ) \begin{aligned} \dfrac{\sin {(3^0x)}^°}{\cos {(3^1x)}^°} + \dfrac{\sin {(3^1x)}^°}{\cos {(3^2x)}^°} + \dfrac{\sin {(3^2x)}^°}{\cos {(3^3x)}^°} + \cdots + \dfrac{\sin {(3^{n-1}x)}^°}{\cos {(3^nx)}^°} & = \dfrac{1}{2} × 2\left(\dfrac{\sin {(3^0x)}^°}{\cos {(3^1x)}^°} + \dfrac{\sin {(3^1x)}^°}{\cos {(3^2x)}^°} + \dfrac{\sin {(3^2x)}^°}{\cos {(3^3x)}^°} + \cdots + \dfrac{\sin {(3^{n-1}x)}^°}{\cos {(3^nx)}^°}\right)\\ \\ & = \dfrac{1}{2} \left(\dfrac{2\sin {(3^0x)}^°}{\cos {(3^1x)}^°} + \dfrac{2\sin {(3^1x)}^°}{\cos {(3^2x)}^°} + \dfrac{2\sin {(3^2x)}^°}{\cos {(3^3x)}^°} + \cdots + \dfrac{2\sin {(3^{n-1}x)}^°}{\cos {(3^nx)}^°}\right)\\ \\ & = \dfrac{1}{2} \left(\dfrac{2×\sin {(3^0x)}^° \cos {(3^0x)}^°}{\cos {(3^1x)}^° \cos {(3^0x)}^°} + \dfrac{2\sin {(3^1x)}^° \cos{(3^1x)}^°}{\cos {(3^2x)}^° \cos {(3^1x)}^°} + \dfrac{2\sin {(3^2)}^° \cos {(3^2x)}^°}{\cos {(3^3x)}^° \cos{(3^2x)}^°} + \cdots + \dfrac{2\sin {(3^{n-1}x)}^° \cos {(3^{n-1}x)}^°}{\cos {(3^nx)}^° \cos {(3^{n-1}x)}^°}\right)\\ \\ & = \dfrac{1}{2} \left(\dfrac{\sin {(2×3^0x)}^°}{\cos {(3^1x)}^° \cos {(3^2x)}^°} + \dfrac{\sin {(2×3^1x)}^°}{\cos {(3^2x)}^° \cos {(3^1x)}^°} + \dfrac{\sin {(2×3^2x)}^°}{\cos {(3^3x)}^° \cos {(3^2x)}^°} \cdots \dfrac{\sin {(2×3^{n-1}x)}^°}{\cos {(3^nx)}^° \cos {(3^{n-1}x)}^°}\right)\\ \\ & = \dfrac{1}{2} \left(\dfrac{\sin {(3^1x - 3^0x)}^°}{\cos {(3^1x)}^° \cos {(3^2x)}^°} + \dfrac{\sin {(3^2x - 3^1x)}^°}{\cos {(3^2x)}^° \cos {(3^1x)}^°} + \dfrac{\sin {(3^3x - 3^2x)}^°}{\cos {(3^3x)}^° \cos {(3^2x)}^°} \cdots \dfrac{\sin {(3^nx - 3^{n-1}x)}^°}{\cos {(3^nx)}^° \cos {(3^{n-1}x)}^°}\right)\\ \\ & = \dfrac{1}{2} \left(\dfrac{\sin {(3^1x)}^° \cos {(3^0x)}^° - \sin{(3^0x)}^°\cos{(3^1x)}^°}{\cos {(3^1x)}^° \cos {(3^0x)}^°} + \dfrac{\sin {(3^2x)}^° \cos {(3^1x)}^° - \sin{(3^1x)}^°\cos{(3^1x)}^°}{\cos {(3^2x)}^° \cos {(3^1x)}^°} + \dfrac{\sin {(3^3x)}^° \cos {(3^2x)}^° - \sin{(3^2x)}^°\cos{(3^3x)}^°}{\cos {(3^3x)}^° \cos {(3^2x)}^°} + \cdots + \dfrac{\sin {(3^nx)}^° \cos {(3^{n-1}x)}^° - \sin{(3^{n-1}x)}^°\cos{(3^nx)}^°}{\cos {(3^nx)}^° \cos {(3^{n-1}x)}^°}\right)\\ \\ & = \dfrac{1}{2} \left(\tan {(3^1x)}^° - \tan {(3^0x)}^° + \tan {(3^2x)}^° - \tan {(3^1x)}^° + \tan {(3^3x)}^° - \tan {(3^2x)}^° + \cdots + \tan {(3^nx)}^° - \tan {(3^{n-1}x)}^°\right)\\ \\ & = \dfrac{1}{2} \left(\tan {(3^nx)}^° - \tan{(3^0x)}^°\right)\\ \\ & = \dfrac{1}{2} \left(\tan {(3^nx)}^° - \tan x^°\right) \end{aligned}

So, plugging in the x = 2 x=2 and substituting 3 n = 59049 3^n = 59049 , we get:-

sin 2 ° cos 6 ° + sin 6 ° cos 18 ° + sin 18 ° cos 54 ° + sin 54 ° cos 162 ° + sin 39366 ° cos 118098 ° = 1 2 ( tan 118098 ° tan 2 ° ) = 1 2 ( tan ( 18 ) ° tan ( 2 ) ° ) α = 18 ° ( and ) β = 2 ° α + β = 18 + 2 = 20 \begin{aligned} \dfrac{\sin 2^°}{\cos 6^°} + \dfrac{\sin 6^°}{\cos {18}^°} + \dfrac{\sin {18}^°}{\cos {54}^°} + \dfrac{\sin {54}^°}{\cos {162}^°} + \cdots \dfrac{\sin {39366}^°}{\cos {118098}^°} & = \dfrac{1}{2} \left(\tan {118098}^° - \tan 2^°\right)\\ \\ & = \dfrac{1}{2} \left(\tan {(18)}^° - \tan {(2)}^°\right)\\ \\ \implies \alpha = {18}^° & \left(\text{and}\right) \beta = 2^°\\ \\ \therefore \alpha + \beta & = 18 + 2\\ \\ & = \color{#3D99F6}{\boxed{20}} \end{aligned}

Pi Han Goh
Jun 29, 2016

We're essentially calculating the sum S : = n = 0 9 sin ( 3 n y ) cos ( 3 n + 1 y ) \displaystyle S:= \sum_{n=0}^9 \dfrac{ \sin(3^n \cdot y^\circ)}{\cos (3^{n+1} \cdot y^\circ)} , where y = 2 y=2 . Since it is hinted that this sum has a closed form of 1 2 ( tan α tan β ) \dfrac12 (\tan \alpha - \tan \beta) , this suggests that S S might be expressed as f ( m ) f ( m k ) = ( f ( m ) f ( m 1 ) ) + ( f ( m 1 ) + f ( m 2 ) ) + ( f ( m 2 ) + f ( m 3 ) ) + + ( f ( m k + 1 ) f ( m k ) ) , f(m) - f(m- k) = (f(m) - f(m-1)) + (f(m-1) + f(m-2)) + (f(m-2) + f(m-3)) + \cdots + ( f(m-k+1) - f(m-k)) \; , so S S could possibly be expressed as a telescoping sum and we wish to determine the function f ( m ) f(m) .

In other words, we want to find A A and B B satisfying the trigonometric identity sin x cos 3 x = 1 2 ( tan A tan B ) \dfrac{\sin x}{\cos 3x} = \dfrac12 (\tan A - \tan B) . If we substitute x x as some common values, like say 4 5 , 6 0 , 12 0 45^\circ, 60^\circ, 120^\circ , we can see that the trigonometric identity holds true when A = 3 x , B = x A = 3x, B = x , this suggests that

sin x cos 3 x = 1 2 ( tan 3 x tan x ) \dfrac{\sin x}{\cos 3x} = \dfrac12 ( \tan 3x - \tan x )

is a trigonometric identity. To make sure our assumption is correct, we need to prove that it is true first.

Claim : sin x cos 3 x = 1 2 ( tan 3 x tan x ) \dfrac{\sin x}{\cos 3x} = \dfrac12 ( \tan 3x - \tan x ) is a trigonometric identity.

Proof : Proving this identity is equivalent to proving that 2 sin x = cos 3 x ( tan 3 x tan x ) 2 \sin x =\cos 3x (\tan 3x - \tan x) is true.

Looking at the RHS, we have cos 3 x ( tan 3 x tan x ) = sin 3 x tan x cos 3 x \cos 3x (\tan 3x - \tan x) = \sin 3x - \tan x \cos 3x . By triple angle identities , we know that

sin ( 3 x ) = 4 sin 3 x + 3 sin x cos ( 3 x ) = 4 cos 3 x 3 cos x \sin(3x) = -4\sin^3 x + 3\sin x \qquad \qquad \cos(3x) =4\cos^3 x - 3\cos x \;

Then, R H S = sin 3 x tan x cos 3 x = ( 4 sin 3 + 3 sin x ) + sin x cos x ( 4 cos 3 x 3 cos x ) = 4 sin 3 + 3 sin x + 4 cos 3 x sin x + 3 sin x = 6 sin x 4 sin x ( cos 2 x + sin 2 x ) = 6 sin x 4 sin x ( 1 ) = 2 sin x = L H S \begin{aligned} RHS &=& \sin 3x - \tan x \cos 3x \\ &=& (-4\sin^3 + 3\sin x) + \dfrac{\sin x}{\cos x}(4\cos^3 x - 3\cos x) \\ &=& -4\sin^3 + 3\sin x + 4\cos^3 x \sin x + 3\sin x \\ &=& 6\sin x - 4\sin x ( \cos^2 x + \sin^2 x)\\ &=& 6\sin x - 4\sin x (1) \\ &= &2\sin x = LHS \quad \blacksquare \end{aligned}

Now back to the sum, we now know that S S can also be expressed as n = 0 9 1 2 [ tan ( 3 n + 1 y ) tan ( 3 n y ) ] = 1 2 n = 0 9 [ f ( m + 1 ) f ( m ) ] \displaystyle \sum_{n=0}^9 \dfrac12 \left [\tan(3^{n+1} y^\circ) - \tan(3^n y ^\circ) \right ] = \dfrac12 \sum_{n=0}^9 [ f(m+1) - f(m) ] , where f ( m ) = tan ( 3 m y ) f(m) = \tan(3^m \cdot y^\circ) . This clearly shows that S S telescopes and is equal to:

S = 1 2 [ f ( 10 ) f ( 0 ) ] = 1 2 [ tan ( 3 10 y ) tan ( y ) ] = 1 2 [ tan ( 3 10 2 ) tan 2 ] . S \; = \; \dfrac12 [ f(10) - f(0) ] \; =\; \dfrac12 [ \tan(3^{10} \cdot y^\circ) - \tan (y^\circ) ]\; =\; \dfrac12 [ \tan(3^{10} \cdot 2^\circ) - \tan 2^\circ] \; .

Since we want to minimize the sum of angles α \alpha and β \beta , then we need to find the minimum positive integers of α \alpha and β \beta such that tan α = tan ( 3 10 2 ) \tan \alpha = \tan(3^{10} \cdot 2^\circ) and tan β = tan 2 \tan \beta = \tan 2 .

It is obvious that min ( β ) = 2 \min(\beta) = 2 . And since g ( x ) = tan x g(x) = \tan x is a periodic function with a fundamental period of 18 0 180^\circ , then min ( α ) = ( 3 10 2 ) m o d 180 = 18 \min( \alpha) = (3^{10} \cdot 2 ) \bmod{180} = 18 .

Our answer is min ( α ) + min ( β ) = 18 + 2 = 20 \min (\alpha ) + \min(\beta ) = 18 + 2 = \boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...