In triangle A B C , tan ( A ) , tan ( B ) , and tan ( C ) are integers and form an increasing arithmetic progression. Find tan ( A ) tan ( C ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since
tan
(
A
)
,
tan
(
B
)
and
tan
(
C
)
from an arithmetic progression, let their values be
b
−
d
,
b
and
b
+
d
respectively for some reals,
b
and
d
and
b
>
0
. Using the property that, for a triangle with angles
A
,
B
and
C
,
tan
(
A
)
+
tan
(
B
)
+
tan
(
C
)
=
tan
(
A
)
tan
(
B
)
tan
(
C
)
, we can write,
b
−
d
+
b
+
b
+
d
=
(
b
−
d
)
b
(
b
+
d
)
⇒
3
b
=
b
(
b
2
−
d
2
)
⇒
b
2
−
d
2
=
3
.
But, tan ( A ) × tan ( C ) = ( b − d ) ( b + d ) = b 2 − d 2 . Thus the required answer is 3 .
Exactly I did the same.....
Problem Loading...
Note Loading...
Set Loading...
Since A + B + C = 1 8 0 , A + C = 1 8 0 − B , and tan ( A + C ) = tan ( 1 8 0 − B ) = − tan ( B ) . Expanding,
1 − tan A tan C tan A + tan C = − tan B . The tangents are in arithmetic progression, so
tan C − tan B = tan B − tan A ; so tan B = 2 tan A + tan C . Since tan A + tan C is nonzero,
− 1 − tan A tan C tan A + tan C = 2 tan A + tan C . Simplifying, tan A tan C = 3.