Tangents?!

Geometry Level 3

In triangle A B C ABC , tan ( A ) , tan ( B ) \tan(A), \tan(B) , and tan ( C ) \tan(C) are integers and form an increasing arithmetic progression. Find tan ( A ) tan ( C ) . \tan(A)\tan(C).


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Awakens
Nov 15, 2015

Since A + B + C = 180 , A + C = 180 B , A + B + C = 180, A + C = 180 - B, and tan ( A + C ) = tan ( 180 B ) = tan ( B ) . \tan(A+C) = \tan(180 - B) = -\tan(B). Expanding,

tan A + tan C 1 tan A tan C \frac{\tan A + \tan C}{1 - \tan A \tan C} = tan B . = -\tan B. The tangents are in arithmetic progression, so

tan C tan B = tan B tan A ; \tan C - \tan B = \tan B - \tan A; so tan B = \tan B = tan A + tan C 2 \frac{\tan A + \tan C}{2} . Since tan A + tan C \tan A + \tan C is nonzero,

tan A + tan C 1 tan A tan C = tan A + tan C 2 -\frac{\tan A + \tan C}{1 - \tan A \tan C} = \frac{\tan A + \tan C}{2} . Simplifying, tan A tan C \tan A \tan C = 3.

Sudeep Salgia
Nov 15, 2015

Since tan ( A ) , tan ( B ) \tan(A), \tan(B) and tan ( C ) \tan(C) from an arithmetic progression, let their values be b d , b b-d, b and b + d b+d respectively for some reals, b b and d d and b > 0 b > 0 . Using the property that, for a triangle with angles A , B A ,B and C C , tan ( A ) + tan ( B ) + tan ( C ) = tan ( A ) tan ( B ) tan ( C ) \tan(A) + \tan(B) + \tan(C) = \tan(A)\tan(B)\tan(C) , we can write,
b d + b + b + d = ( b d ) b ( b + d ) 3 b = b ( b 2 d 2 ) b 2 d 2 = 3 \displaystyle b - d + b +b + d = (b-d)b(b+d) \Rightarrow 3b = b (b^2 - d^2) \Rightarrow b^2 - d^2 = 3 .

But, tan ( A ) × tan ( C ) = ( b d ) ( b + d ) = b 2 d 2 \tan(A) \times \tan(C) = (b-d)(b+d) = b^2 - d^2 . Thus the required answer is 3 \displaystyle \boxed{3} .

Exactly I did the same.....

Ayush Agarwal - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...