Tangents

Geometry Level 5

Given that tan θ 1 ± 2 \tan \theta \neq 1\pm\sqrt{2} , what is the sum of all solutions (in degrees) for the following equation for 0 θ 36 0 0^\circ \le \theta \le 360^\circ ? tan 4 θ + 4 tan 3 θ 6 tan 2 θ 4 tan θ + 1 = 0 \tan^{4} \theta+4\tan^{3} \theta-6\tan^{2} \theta-4\tan \theta+1 = 0


The answer is 1350.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Dec 3, 2016

Notice that we can express the given equation in terms of tan ( 4 θ ) = 4 tan ( θ ) 4 tan 3 ( θ ) 1 6 tan 2 ( θ ) + tan 4 ( θ ) \tan\left(4\theta\right) = \dfrac{4\tan(\theta) - 4\tan^3(\theta)}{1 - 6\tan^2(\theta) + \tan^4(\theta)} since by arranging terms, tan 4 ( θ ) 6 tan 2 ( θ ) + 1 = 4 tan 3 ( θ ) 4 tan ( θ ) 1 = 4 tan 3 ( θ ) 4 tan ( θ ) 1 6 tan 2 ( θ ) + tan 4 ( θ ) 1 = 4 tan ( θ ) 4 tan 3 ( θ ) 1 6 tan 2 ( θ ) + tan 4 ( θ ) tan ( π 4 ) = 4 tan ( θ ) 4 tan 3 ( θ ) 1 6 tan 2 ( θ ) + tan 4 ( θ ) 4 θ = π k 3 π 4 k Z θ = π k 4 3 π 16 \begin{array}{rl} \tan^4(\theta) - 6\tan^2(\theta) + 1 &= 4\tan^3(\theta) - 4\tan(\theta)\\ 1 &= \dfrac{4\tan^3(\theta) - 4\tan(\theta)}{1 - 6\tan^2(\theta) + \tan^4(\theta)}\\ -1 &= \dfrac{4\tan(\theta) - 4\tan^3(\theta)}{1 - 6\tan^2(\theta) + \tan^4(\theta)}\\ \tan\left(-\dfrac{\pi}{4}\right) &= \dfrac{4\tan(\theta) - 4\tan^3(\theta)}{1 - 6\tan^2(\theta) + \tan^4(\theta)}\\ \Longrightarrow 4\theta &= \pi k - \dfrac{3\pi}{4} \quad k \in \mathbb{Z}\\ \theta &= \dfrac{\pi k}{4} - \dfrac{3\pi}{16} \end{array} Between 0 θ 2 π 0 \leq \theta \leq 2\pi , the set of solutions is θ = { π 16 , 5 π 16 , 9 π 16 , 13 π 16 , 17 π 16 , 21 π 16 , 25 π 16 , 29 π 16 } \theta = \left\{\dfrac{\pi}{16}, \dfrac{5\pi}{16}, \dfrac{9\pi}{16}, \dfrac{13\pi}{16}, \dfrac{17\pi}{16}, \dfrac{21\pi}{16}, \dfrac{25\pi}{16}, \dfrac{29\pi}{16}\right\} all in which tan ( θ ) 1 ± 2 \tan(\theta) \neq 1 \pm \sqrt{2} (see Note ).. Thus, the sum of all solutions is 15 π 2 radians = 135 0 \dfrac{15\pi}{2}\text{ radians } = \boxed{1350^{\circ}}


Note

To show that the solutions do not give 1 ± 2 1 \pm \sqrt{2} , solve the given equation as if we were to solve a polynomial. Let x = tan ( θ ) x = \tan(\theta) . Then, x 4 + 4 x 3 6 x 2 4 x + 1 = 0 x^4 + 4x^3 - 6x^2 - 4x + 1 = 0 Dividing both sides by x 2 x^2 , x 2 + 4 x 6 4 x + 1 x 2 = 0 x^2 + 4x - 6 - \dfrac{4}{x} + \dfrac{1}{x^2} = 0 which can be expressed as ( x 2 + 1 x 2 ) + 4 ( x 1 x ) 6 = 0 ( x 2 + ( 1 x ) 2 2 ) + 4 ( x 1 x ) 6 + 2 = 0 ( x 1 x ) 2 + 4 ( x 1 x ) 4 = 0 \begin{array}{rl} \left(x^2 + \dfrac{1}{x^2}\right) + 4\left(x - \dfrac{1}{x}\right) - 6 &= 0\\ \left(x^2 + \left(-\dfrac{1}{x}\right)^2 - 2\right) + 4\left(x - \dfrac{1}{x}\right) - 6 + 2 &= 0\\ \left(x - \dfrac{1}{x}\right)^2 + 4\left(x - \dfrac{1}{x}\right) - 4 &= 0 \end{array} Let u = x 1 x u = x - \dfrac{1}{x} , so u 2 + 4 u 4 = 0 u^2 + 4u - 4 = 0 where u = { 2 ± 2 } u = \{-2 \pm \sqrt{2}\} Then, x 1 x = u x 2 1 = u x x 2 u x 1 = 0 x = u ± u 2 + 4 2 \begin{array}{rl} x - \dfrac{1}{x} &= u\\ x^2 - 1 &= ux\\ x^2 - ux - 1 &= 0\\ x &= \dfrac{u \pm \sqrt{u^2 + 4}}{2}\\ \end{array} which thus yields tan ( θ 1 ) = 1 + 2 + 4 2 2 tan ( θ 2 ) = 1 + 2 4 2 2 tan ( θ 3 ) = 1 2 4 + 2 2 tan ( θ 4 ) = 1 2 + 4 + 2 2 \begin{array}{rl} \tan(\theta_1) &= -1 + \sqrt{2} + \sqrt{4 - 2\sqrt{2}}\\ \tan(\theta_2) &= -1 + \sqrt{2} - \sqrt{4 - 2\sqrt{2}}\\ \tan(\theta_3) &= -1 - \sqrt{2} - \sqrt{4 + 2\sqrt{2}}\\ \tan(\theta_4) &= -1 - \sqrt{2} + \sqrt{4 + 2\sqrt{2}}\\ \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...