Tangents and Series

Calculus Level 4

Let e e be Euler's number and x > 1 |x| > 1 .

Let f ( x ) = lim n j = 1 n ( 1 x ) j j = 1 n ( j n ) n ( 1 x ) n j f(x) = \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} (\dfrac{1}{x})^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j}} and g ( x ) = lim n j = 1 n ( 1 ) j + 1 ( 1 x ) j j = 1 n ( 1 ) n j ( j n ) n ( 1 x ) n j g(x) = \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} (-1)^{j + 1}(\dfrac{1}{x})^{j}}{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j}}

If A C \overleftrightarrow{AC} is tangent to f ( x ) f(x) at A : ( e , f ( e ) ) A: (e,f(e)) and B D \overleftrightarrow{BD} is tangent to g ( x ) g(x) at B : ( e , g ( e ) ) B: (-e,g(-e)) , find the tangent lines to both curves and find the distance B C \overline{BC} to 6 decimal places.


The answer is 2.36026.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 14, 2018

Let x > 1 |x| > 1 .

lim n j = 1 n ( j n ) n ( 1 x ) n j = \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j} = lim n j = 0 n 1 ( 1 j n ) n ( 1 x ) j = \lim_{n \rightarrow \infty} \sum_{j = 0}^{n - 1} (1 - \dfrac{j}{n})^n (\dfrac{1}{x})^{j} = n = 0 ( 1 e x ) n = e x e x 1 \sum_{n = 0}^{\infty} (\dfrac{1}{ex})^n = \dfrac{ex}{ex - 1} on x > 1 e |x| > \dfrac{1}{e}

f ( x ) = lim n j = 1 n ( 1 x ) j j = 1 n ( j n ) n ( 1 x ) n j = e x 1 e x ( x 1 ) \implies f(x) = \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} (\dfrac{1}{x})^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j}} = \boxed{\dfrac{ex - 1}{ex(x - 1)}} .on x > 1 |x| > 1

and

g ( x ) = n = 1 ( 1 ) n + 1 ( 1 x ) n n = 0 ( 1 ) n ( 1 e x ) n = n = 1 ( 1 x ) n n = 0 ( 1 e ( x ) ) n = g(x) = \dfrac{\sum_{n = 1}^{\infty} (-1)^{ n + 1} (\dfrac{1}{x})^n}{\sum_{n = 0}^{\infty} (-1)^n (\dfrac{1}{ex})^n} = \dfrac{-\sum_{n = 1}^{\infty} (\dfrac{1}{-x})^n}{\sum_{n = 0}^{\infty} (\dfrac{1}{e(-x)})^n} = e x + 1 e x ( x + 1 ) \boxed{\dfrac{ex + 1}{ex(x + 1)}} on x > 1 |x| > 1 .

d d x ( f ( x ) ) = e x 2 2 x + 1 e x 2 ( x 1 ) 2 \dfrac{d}{dx}(f(x)) = -\dfrac{ex^2 - 2x + 1}{ex^2(x - 1)^2} and d d x ( g ( x ) ) = e x 2 + 2 x + 1 e x 2 ( x + 1 ) 2 \dfrac{d}{dx}(g(x)) = -\dfrac{ex^2 + 2x + 1}{ex^2(x + 1)^2} .

a > 0 d d x ( f ( x ) ) x = a = e a 2 2 a + 1 e a 2 ( a 1 ) 2 = d d x ( g ( x ) ) x = a a > 0 \implies \dfrac{d}{dx}(f(x))|_{x = a} = -\dfrac{ea^2 - 2a + 1}{ea^2(a - 1)^2} = \dfrac{d}{dx}(g(x))|_{x = -a}

a = e d d x ( f ( x ) ) x = e = e 3 2 e + 1 e 3 ( e 1 ) 2 = d d x ( g ( x ) ) x = e a = e \implies \dfrac{d}{dx}(f(x))|_{x = e} = -\dfrac{e^3 - 2e + 1}{e^3(e - 1)^2} = \dfrac{d}{dx}(g(x))|_{x = -e}

The tangent line to the curve f ( x ) f(x) at A : ( e , e 2 1 e 2 ( e 1 ) ) A: (e, \dfrac{e^2 - 1}{e^2(e - 1)}) is:

( e 3 2 e + 1 ) x + e 3 ( e 1 ) 2 y ( 2 e 4 e 3 3 e 2 + 2 e ) = 0 (e^3 - 2e + 1)x + e^3(e - 1)^2y - (2e^4 - e^3 - 3e^2 + 2e) = 0

and

The tangent line to the curve g ( x ) g(x) at B : ( e , e 2 1 e 2 ( e 1 ) ) B: (-e, -\dfrac{e^2 - 1}{e^2(e - 1)}) is:

( e 3 2 e + 1 ) x + e 3 ( e 1 ) 2 y + ( 2 e 4 e 3 3 e 2 + 2 e ) = 0 (e^3 - 2e + 1)x + e^3(e - 1)^2y + (2e^4 - e^3 - 3e^2 + 2e) = 0 .

Using point B : ( e , e 2 1 e 2 ( e 1 ) ) B: (-e, -\dfrac{e^2 - 1}{e^2(e - 1)}) and the line ( e 3 2 e + 1 ) x + e 3 ( e 1 ) 2 y ( 2 e 4 e 3 3 e 2 + 2 e ) = 0 (e^3 - 2e + 1)x + e^3(e - 1)^2y - (2e^4 - e^3 - 3e^2 + 2e) = 0 the distance d = B C = 2 e ( 2 e 3 + e 2 + 3 e 2 ) ( e 1 ) e 8 2 e 7 + e 6 + e 4 + 2 e 3 e 2 2 e + 1 2.36026 d = BC = \dfrac{|2e(-2e^3 + e^2 + 3e - 2)|}{(e - 1)\sqrt{e^8 - 2e^7 + e^6 + e^4 + 2e^3 - e^2 - 2e + 1}} \approx \boxed{2.36026}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...