Tangents of nonstandard angles?

Geometry Level 4

3 ( 1 3 + tan 1 ) ( 1 3 + tan 2 ) ( 1 3 + tan 5 8 ) ( 1 3 + tan 5 9 ) \sqrt3 \left(\frac{1}{\sqrt3}+\tan1^\circ\right)\left(\frac{1}{\sqrt3}+\tan2^\circ\right)\cdots\left(\frac{1}{\sqrt3}+\tan58^\circ\right)\left(\frac{1}{\sqrt3}+\tan59^\circ\right)

The above product can be written as a b c d \dfrac{a^{b}}{c^{d}} , where a , c a, c are prime numbers. Then find a + b + c + d a+b+c+d upto 2 decimal places.

Bonus :

Try to generalize (I think you'll get what I'm saying once you solve the problem).


This is problem is a more modified form of a question from our tests.
Feel this is kinda simple, try this problem


The answer is 93.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sam Bealing
Apr 15, 2016

Use the identity:

tan A + tan B = sin A cos A + sin B cos B = sin A cos B + sin B cos A cos A cos B = sin ( A + B ) cos A cos B \tan{A}+\tan{B}=\frac{\sin{A}}{\cos{A}}+\frac{\sin{B}}{\cos{B}}=\frac{\sin{A} \cos{B}+\sin{B} \cos{A}}{\cos{A} \cos{B}}=\frac{\sin{(A+B)}}{\cos{A} \cos{B}}

3 ( 1 3 + tan 1 ° ) ( 1 3 + tan 2 ° ) . . . . . . ( 1 3 + tan 58 ° ) ( 1 3 + tan 59 ° ) \sqrt3 \left(\frac{1}{\sqrt3}+\tan1°\right)\left(\frac{1}{\sqrt3}+\tan2°\right)......\left(\frac{1}{\sqrt3}+\tan58°\right)\left(\frac{1}{\sqrt3}+\tan59°\right)

= 3 ( tan 30 ° + tan 1 ° ) ( tan 30 ° + tan 2 ° ) . . . . . . ( tan 30 ° + tan 58 ° ) ( tan 30 ° + tan 59 ° ) =\sqrt3 \left(\tan{30°}+\tan1°\right)\left(\tan{30°}+\tan2°\right)......\left(\tan{30°}+\tan58°\right)\left(\tan{30°}+\tan59°\right)

= 3 ( sin ( 30 ° + 1 ° ) cos 30 ° cos 1 ° ) ( sin ( 30 ° + 2 ° ) cos 30 ° cos 2 ° ) . . . . . ( sin ( 30 ° + 58 ° ) cos 30 ° cos 58 ° ) ( sin ( 30 ° + 59 ° ) cos 30 ° cos 59 ° ) =\sqrt{3} \left(\frac{\sin{(30°+1°)}}{\cos{30°} \cos{1°}} \right) \left(\frac{\sin{(30°+2°)}}{\cos{30°} \cos{2°}} \right) ..... \left(\frac{\sin{(30°+58°)}}{\cos{30°} \cos{58°}} \right) \left(\frac{\sin{(30°+59°)}}{\cos{30°} \cos{59°}} \right)

= 3 ( 1 cos 30 ° ) 59 ( sin 31 ° cos 1 ° ) ( sin 32 ° cos 2 ° ) . . . . ( sin 88 ° cos 58 ° ) ( sin 89 ° cos 59 ° ) =\sqrt{3} \left(\frac{1}{\cos{30°}} \right)^{59} \left(\frac{\sin{31°}}{\cos{1°}} \right) \left(\frac{\sin{32°}}{\cos{2°}} \right) .... \left(\frac{\sin{88°}}{\cos{58°}} \right) \left(\frac{\sin{89°}}{\cos{59°}} \right)

We also have: sin 90 ° x ° = cos x ° \sin{90°-x°}=\cos{x°} :

. . . = 3 ( 2 3 ) 59 sin 31 ° sin 32 ° . . . sin 88 ° sin 89 ° sin 89 ° sin 88 ° . . . sin 32 ° sin 31 ° ...= \sqrt{3} \left(\frac{2}{\sqrt{3}} \right)^{59} \frac{\sin{31°} \sin {32°} ... \sin{88°} \sin {89°}}{\sin{89°} \sin{88°} ... \sin{32°} \sin{31°}}

= 3 ( 2 59 ( 3 ) 59 ) = 2 59 ( 3 ) 58 = 2 59 3 29 =\sqrt{3} \left(\frac{2^{59}}{(\sqrt{3})^{59}} \right)= \frac{2^{59}}{(\sqrt{3})^{58}}=\frac{2^{59}}{3^{29}}

a = 2 , b = 59 , c = 3 , d = 29 a + b + c + d = 2 + 59 + 3 + 29 = 93 a=2,b=59,c=3,d=29 \Rightarrow a+b+c+d=2+59+3+29=\boxed{93}

Moderator note:

We can show that ( tan 3 0 + tan α ) ( tan 3 0 + tan ( 6 0 α ) ) = 4 3 (\tan 30 ^ \circ + \tan \alpha) ( \tan 30^\circ + \tan (60^\circ - \alpha) ) = \frac{4}{3} , using the ideas that you've presented.

Very nice proof. Just one thing. I think the denominator of the 6th line is a bit wrong. If its not could you explain that part.

Vignesh S - 5 years, 2 months ago

Log in to reply

Yes sorry, it was a lot wrong. I've fixed it now thank you.

Sam Bealing - 5 years, 2 months ago
Rishabh Jain
Apr 15, 2016

P = 2 r = 1 29 ( 1 3 + tan r ° ) ( 1 3 + tan ( 60 r ) ° ) T \mathfrak P=2\prod_{r=1}^{29}\underbrace{\left(\frac{1}{\sqrt 3}+\tan r°\right)\left(\frac{1}{\sqrt 3}+\tan(60- r)°\right)}_{\color{#D61F06}{\mathfrak T}}\

T = 1 / 3 + 1 3 ( tan r ° + tan ( 60 r ) ° ) A + ( tan r ° ) ( tan ( 60 r ° ) ) \color{#D61F06}{\mathfrak T}=1/3+\dfrac{1}{\sqrt 3}\underbrace{(\tan r°+\tan(60-r)°)}_{\large\mathfrak A}+(\tan r°)(\tan(60-r°))

A = tan r ° + tan ( 60 r ) ° = ( tan r ° + tan ( 60 r ° ) 1 ( tan r ° ) ( tan ( 60 r ° ) ) ( 1 ( tan r ° ) ( tan ( 60 r ° ) ) = 3 ( 1 ( tan r ° ) ( tan ( 60 r ° ) ) \mathfrak A=\tan r°+\tan(60-r)°~~~~~~\\=\left(\color{#3D99F6}{\dfrac{\tan r°+\tan(60-r°)}{1-(\tan r°)(\tan(60-r°)}}\right)(1-(\tan r°)(\tan(60-r°) )\\=\sqrt 3(1-(\tan r°)(\tan(60-r°))~~

T = 4 / 3 \Large\therefore\color{#D61F06}{\mathfrak T}=4/3

P = 2 r = 1 29 ( 4 3 ) \Large\mathfrak P=2\prod_{r=1}^{29}\left(\dfrac 43\right)

= 2 ( 4 3 ) 29 = 2 59 3 29 \Large =2\left(\dfrac 43\right)^{29}=\dfrac{2^{59}}{3^{29}}

Therefore 2 + 59 + 3 + 29 = 93 2+59+3+29=\boxed{93} .

I don't know why, but we both have alike solutions many times

Aakash Khandelwal - 5 years, 1 month ago

Log in to reply

Ya... I have this similarity with many of the guys here on brilliant and it's kinda' cool... :-)

Rishabh Jain - 5 years, 1 month ago

Rishabh cool... I just love ur solutions. It motivates me to improve myself..ty

Pawan pal - 5 years, 1 month ago

Log in to reply

Ohhh... Thanks ¨ \large\ddot\smile

Rishabh Jain - 5 years, 1 month ago
Ahmad Saad
Apr 16, 2016

Vignesh S
Apr 15, 2016
  • Combine the terms from the beginning and the end. The general term can be written as ( 1 3 + tan ( A ) ) ( 1 3 + tan ( 60 ° A ) ) \left(\dfrac{1}{\sqrt3}+\tan(A)\right)\left(\dfrac{1}{\sqrt3}+\tan(60°-A)\right) = 1 3 + 1 3 ( tan ( A ) + tan ( 60 ° A ) + tan ( A ) tan ( 60 ° A ) ) =\dfrac{1}{3}+\dfrac{1}{\sqrt3}(\tan(A)+\tan(60°-A)+\tan(A)\tan(60°-A)) = 1 3 + 1 3 ( tan ( A + 60 ° A ) ) ( 1 tan ( A ) tan ( 60 ° A ) ) + tan ( A ) tan ( 60 ° A ) =\dfrac{1}{3}+\dfrac{1}{\sqrt3}(\tan(A+60°-A))(1-\tan(A)\tan(60°-A))+\tan(A)\tan(60°-A) = 1 3 + 1 = 4 3 =\dfrac{1}{3}+1=\dfrac{4}{3} But the product term for A = 30 ° A=30° is 2 3 \dfrac{2}{\sqrt3} . We see that for all A 30 ° A\ne30° the product on multiplication becomes 4 29 3 29 \dfrac{4^{29}}{3^{29}} finally multipying by 2 3 \dfrac{2}{\sqrt3} and 3 \sqrt3 also we get it as 2 59 3 29 \dfrac{2^{59}}{3^{29}} hence the answer is 2 + 3 + 59 + 29 = 93 2+3+59+29=93

    By. g e n e r a l i s e \color{#3D99F6}{generalise} I mean instead of 60 ° 60° take it as some B \color{#3D99F6}{B} and add 1 tan ( B ) \color{#D61F06}{\frac{1}{\tan(B)}} to make the product term as A = 1 ° B 1 ° ( 1 tan ( B ) + tan ( B A ) ) \color{#D61F06}{\Large\prod_{A=1°}^{B-1°}\left(\dfrac{1}{\tan(B)}+\tan(B-A)\right)} and check the middle term once. Try for B = 30 ° \color{#D61F06}{B=30°} the middle term is amazing

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...