Tangle

Calculus Level 3

0 π 4 ( 1 tan x 1 + tan x ) 4 d x = ? \displaystyle\int_{0}^{\frac{\pi}{4}}\left( \frac{1-\tan x}{1+\tan x}\right)^4 \mathrm dx\, = \, ?


The answer is 0.11873149673.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 28, 2020

I = 0 π 4 ( 1 tan x 1 + tan x ) 4 d x By reflections a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 4 ( 1 tan ( π 4 x ) 1 + tan ( π 4 x ) ) 4 d x = 0 π 4 ( 1 1 tan x 1 + tan x 1 + 1 tan x 1 + tan x ) 4 d x = 0 π 4 tan 4 x d x = 0 π 4 tan 2 x ( sec 2 x 1 ) d x = 0 π 4 tan 2 x d tan x 0 π 4 tan 2 x d x = tan 3 x 3 0 π 4 0 π 4 ( sec 2 x 1 ) d x = 1 3 tan x + x 0 π 4 = π 4 2 3 0.119 \begin{aligned} I & = \int_0^\frac \pi 4 \left(\frac {1-\tan x}{1+\tan x}\right)^4 dx & \small \blue{\text{By reflections }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \int_0^\frac \pi 4 \left(\frac {1-\tan \left(\frac \pi 4 -x\right)}{1+\tan \left(\frac \pi 4 -x\right)}\right)^4 dx \\ & = \int_0^\frac \pi 4 \left(\frac {1-\frac {1-\tan x}{1+\tan x}}{1+\frac {1-\tan x}{1+\tan x}}\right)^4 dx \\ & = \int_0^\frac \pi 4 \tan^4 x \ dx \\ & = \int_0^\frac \pi 4 \tan^2 x (\sec^2 x -1) \ dx \\ & = \int_0^\frac \pi 4 \blue{\tan^2 x} \ d \blue{\tan x} - \int_0^\frac \pi 4 \tan^2 x \ dx \\ & = \frac {\tan^3 x}3 \bigg|_0^\frac \pi 4 - \int_0^\frac \pi 4 (\sec^2 x - 1) \ dx \\ & = \frac 13 - \tan x + x \ \bigg|_0^\frac \pi 4 \\ & = \frac \pi 4 - \frac 23 \approx \boxed{0.119} \end{aligned}


Reference: Integration tricks -- reflections

How about generalization, Sir ? I set the general problem here . Hope you will like it.

Naren Bhandari - 1 year, 1 month ago

Log in to reply

Thanks. I will try. But nowadays your problems are beyond me.

Chew-Seong Cheong - 1 year, 1 month ago

Let π 4 x = y \dfrac{π}{4}-x=y . Then d x = d y dx=-dy . So the integral reduces to 0 π 4 tan 4 y d y = 0 π 4 tan 2 y ( sec 2 y 1 ) d y = π 4 2 3 1.1187314967307 \displaystyle \int_0^{\frac{π}{4}} \tan^4 ydy=\displaystyle \int_0^{\frac{π}{4}} \tan^2 y(\sec^2 y-1)dy=\dfrac{π}{4}-\dfrac{2}{3}\approx \boxed {1.1187314967307} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...