∫ 0 4 π ( 1 + tan x 1 − tan x ) 4 d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How about generalization, Sir ? I set the general problem here . Hope you will like it.
Log in to reply
Thanks. I will try. But nowadays your problems are beyond me.
Let 4 π − x = y . Then d x = − d y . So the integral reduces to ∫ 0 4 π tan 4 y d y = ∫ 0 4 π tan 2 y ( sec 2 y − 1 ) d y = 4 π − 3 2 ≈ 1 . 1 1 8 7 3 1 4 9 6 7 3 0 7 .
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 4 π ( 1 + tan x 1 − tan x ) 4 d x = ∫ 0 4 π ( 1 + tan ( 4 π − x ) 1 − tan ( 4 π − x ) ) 4 d x = ∫ 0 4 π ( 1 + 1 + tan x 1 − tan x 1 − 1 + tan x 1 − tan x ) 4 d x = ∫ 0 4 π tan 4 x d x = ∫ 0 4 π tan 2 x ( sec 2 x − 1 ) d x = ∫ 0 4 π tan 2 x d tan x − ∫ 0 4 π tan 2 x d x = 3 tan 3 x ∣ ∣ ∣ ∣ 0 4 π − ∫ 0 4 π ( sec 2 x − 1 ) d x = 3 1 − tan x + x ∣ ∣ ∣ ∣ 0 4 π = 4 π − 3 2 ≈ 0 . 1 1 9 By reflections ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Reference: Integration tricks -- reflections