Tangled with differentials

Calculus Level 4

If x = t cos t x = t \cos t and y = t + sin t y = t + \sin t , then find d 2 x d y 2 \dfrac{d^2x}{dy^2} at t = π 2 t = \dfrac \pi 2 .

If the answer is in the form ( 1 ) a ( π + b c ) (-1)^a \left(\dfrac{π + b}{c}\right) , where a a is the smallest possible whole number satisfying the solution and b b and c c are natural numbers, input the answer as a + b + c a+b+c .

For more interesting problems, try out my set No Problemo


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

{ x = t cos t y = t + sin t \begin{cases} x = t \cos t \\ y = t + \sin t \end{cases}

{ d x d t = cos t t sin t = x t t ( y t ) d y d t = 1 + cos t = 1 + x t \implies \begin{cases} \dfrac {dx}{dt} = \cos t - t\sin t = \dfrac xt - t(y-t) \\ \dfrac {dy}{dt} = 1 + \cos t = 1 + \dfrac xt \end{cases}

d x d y = d x d t × d t d y = x t 2 ( y t ) t + x d 2 x d y 2 = ( d x d y 2 t d t d y ( y t ) t 2 ( 1 d t d y ) ) ( t + x ) ( x t 2 ( y t ) ) ( d t d y + d x d y ) ( t + x ) 2 See note. d 2 x d y 2 t = π 2 = ( π 2 2 π 2 ( π 2 + 1 π 2 ) π 2 4 ( 1 1 ) ) ( π 2 + 0 ) ( 0 π 2 4 ( π 2 + 1 π 2 ) ) ( 1 π 2 ) ( π 2 + 0 ) 2 = 3 π 2 4 + π 2 4 π 3 8 π 2 4 = π + 4 2 \begin{aligned} \frac {dx}{dy} & = \frac {dx}{dt} \times \frac {dt}{dy} = \frac {x-t^2(y-t)}{t+x} \\ \frac {d^2x}{dy^2} & = \frac {\left(\frac {dx}{dy} -2t \frac {dt}{dy}(y-t)-t^2\left(1-\frac {dt}{dy}\right)\right)(t+x) -(x-t^2(y-t))\left(\frac {dt}{dy}+\frac {dx}{dy}\right)}{(t+x)^2} & \small \color{#3D99F6} \text{See note.} \\ \frac {d^2x}{dy^2} \bigg|_{t = \frac \pi 2} & = \frac {\left(-\frac \pi 2 -2 \cdot \frac \pi 2 \left(\frac \pi 2 + 1-\frac \pi 2 \right)-\frac {\pi^2} 4 \left(1-1\right)\right) \left(\frac \pi 2+0\right) - \left(0-\frac {\pi^2}4 \left(\frac \pi 2+1-\frac \pi 2\right)\right)\left(1-\frac \pi 2\right)}{\left(\frac \pi 2+0\right)^2} \\ & = \frac {- \frac {3\pi^2}4 + \frac {\pi^2}4 - \frac {\pi^3}8}{\frac {\pi^2}4} \\ & = - \frac {\pi + 4}2 \end{aligned}

a + b + c = 1 + 4 + 2 = 7 \implies a+b+c = 1+4+2 = \boxed{7}


Note: When t = π 2 t = \dfrac \pi 2 , x = 0 x = 0 , y = π 2 + 1 y= \dfrac \pi 2 + 1 , d x d t = π 2 \dfrac {dx}{dt} = - \dfrac \pi 2 , d t d y = 1 \dfrac {dt}{dy} = 1 and d x d y = π 2 \dfrac {dx}{dy} = - \dfrac \pi 2 .

Yup! I did it exactly the same way, sir. :) , simply simple.

Sarthak Chaturvedi - 4 years ago

Simple Chain Rule.

Sharky Kesa - 3 years, 11 months ago
Sibasish Mishra
Jun 4, 2017

x = t cos t , y = t + sin t . d x d t = cos t t sin t d y d t = 1 + cos t . d x d y = cos t t sin t 1 + cos t = 1 1 + t sin t 1 + cos t S o d 2 x d 2 y = d d x d y d t d y d t = d ( 1 1 + t sin t 1 + cos t ) d t 1 + cos t = ( sin t + t cos t ) ( 1 + cos t ) + ( 1 + t sin t ) ( sin t ) ( 1 + cos t ) 2 1 + cos t S o d 2 x d 2 y t = 1 2 π = ( 1 + 1 2 π 0 ) ( 1 + 0 ) + ( 1 + 1 2 π 1 ) ( 1 ) ( 1 + 0 ) 3 = ( 1 ) 1 ( 2 + 1 2 π ) = ( 1 ) 1 4 + π 2 = ( 1 ) a b + π c . a + b + c = 1 + 4 + 2 = 7. x=t\cos t,~~~~~~~~y=t+\sin t.\\ \implies~~\dfrac{dx}{dt}=\cos t-t\sin t~~~~~~~~\dfrac{dy}{dt}=1+\cos t.\\ \therefore~~\dfrac{dx}{dy}=\dfrac{\cos t - t\sin t}{1+\cos t}=1~-~\dfrac{1 + t\sin t}{1+\cos t}\\ So~~\dfrac{d^2x}{d^2y}= \dfrac{ \dfrac{ d \frac{dx } {dy}}{dt} }{ \dfrac{dy}{dt}} = \dfrac { \dfrac{d \Big (1~-~ \frac{1 + t\sin t } {1+\cos t} \Big ) } {dt} } { 1+\cos t } \\ = \dfrac{ - \dfrac { ( \sin t+t \cos t )( 1+\cos t) +(1 + t \sin t)(\sin t) } {(1+\cos t )^2} } { 1+\cos t} \\ So~~\dfrac{d^2x}{d^2y}_{t=\frac12\pi} = - \dfrac {(1+\frac 12 \pi*0)(1+0) +(1+\frac 12 \pi*1)(1) } {(1+0 )^3} \\ =(-1)^1*(2+\frac12\pi)=(-1)^1*\dfrac{4+\pi} 2=(-1)^a*\dfrac{b+\pi} c. \\ a+b+c=1+4+2=\Large~~~\color{#D61F06}{7}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...