If x = t cos t and y = t + sin t , then find d y 2 d 2 x at t = 2 π .
If the answer is in the form ( − 1 ) a ( c π + b ) , where a is the smallest possible whole number satisfying the solution and b and c are natural numbers, input the answer as a + b + c .
For more interesting problems, try out my set No Problemo
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yup! I did it exactly the same way, sir. :) , simply simple.
Simple Chain Rule.
x = t cos t , y = t + sin t . ⟹ d t d x = cos t − t sin t d t d y = 1 + cos t . ∴ d y d x = 1 + cos t cos t − t sin t = 1 − 1 + cos t 1 + t sin t S o d 2 y d 2 x = d t d y d t d d y d x = 1 + cos t d t d ( 1 − 1 + cos t 1 + t sin t ) = 1 + cos t − ( 1 + cos t ) 2 ( sin t + t cos t ) ( 1 + cos t ) + ( 1 + t sin t ) ( sin t ) S o d 2 y d 2 x t = 2 1 π = − ( 1 + 0 ) 3 ( 1 + 2 1 π ∗ 0 ) ( 1 + 0 ) + ( 1 + 2 1 π ∗ 1 ) ( 1 ) = ( − 1 ) 1 ∗ ( 2 + 2 1 π ) = ( − 1 ) 1 ∗ 2 4 + π = ( − 1 ) a ∗ c b + π . a + b + c = 1 + 4 + 2 = 7 .
Problem Loading...
Note Loading...
Set Loading...
{ x = t cos t y = t + sin t
⟹ ⎩ ⎪ ⎨ ⎪ ⎧ d t d x = cos t − t sin t = t x − t ( y − t ) d t d y = 1 + cos t = 1 + t x
d y d x d y 2 d 2 x d y 2 d 2 x ∣ ∣ ∣ ∣ t = 2 π = d t d x × d y d t = t + x x − t 2 ( y − t ) = ( t + x ) 2 ( d y d x − 2 t d y d t ( y − t ) − t 2 ( 1 − d y d t ) ) ( t + x ) − ( x − t 2 ( y − t ) ) ( d y d t + d y d x ) = ( 2 π + 0 ) 2 ( − 2 π − 2 ⋅ 2 π ( 2 π + 1 − 2 π ) − 4 π 2 ( 1 − 1 ) ) ( 2 π + 0 ) − ( 0 − 4 π 2 ( 2 π + 1 − 2 π ) ) ( 1 − 2 π ) = 4 π 2 − 4 3 π 2 + 4 π 2 − 8 π 3 = − 2 π + 4 See note.
⟹ a + b + c = 1 + 4 + 2 = 7
Note: When t = 2 π , x = 0 , y = 2 π + 1 , d t d x = − 2 π , d y d t = 1 and d y d x = − 2 π .