'Tan'ned Up

Calculus Level 4

Evaluate 0 π 4 ln ( tan ( x 3 ) tan 2 ( x ) ) d x \int_{0}^{\frac{\pi}{4}}\ln\left(\frac{\tan\left(\frac{x}{3}\right)}{\tan^{2}\left(x\right)}\right)dx


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 23, 2020

By the property of logarithm we write the integral as 0 π 4 ( ln ( tan ( x 3 ) 2 ln ( tan x ) ) d x \int_{0}^{\frac{\pi}{4}}\left(\ln(\tan\left(\frac{x}{3}\right)-2\ln\left(\tan x\right)\right)dx . It is easy to derive that or well know result that 2 0 π 4 ln tan ( x ) d x = 2 k = 0 ( 1 ) k 2 k + 1 = 2 G 2\int_0^{\frac{\pi}{4}}\ln\tan(x)dx=-2\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}=-2G where G G is Catalan's constant and we are left to evaluate the integral 0 π 4 ln tan ( x 3 ) d x = 2 n = 0 1 2 n + 1 0 π 4 cos ( 2 x 3 ( 2 n + 1 ) ) d x = 3 n = 0 1 ( 2 n + 1 ) 2 sin ( π 6 ( 2 n + 1 ) ) \int_0^{\frac{\pi}{4}} \ln\tan\left(\frac{x}{3}\right)dx=-2\sum_{n=0}^{\infty}\frac{1}{2n+1}\int_0^{\frac{\pi}{4}}\cos\left(\frac{2x}{3}(2n+1)\right)dx = -3\sum_{n=0}^{\infty}\frac{1 }{(2n+1)^2}\sin\left(\frac{\pi}{6}(2n+1)\right) Now we evaluate the latter series L 3 = 1 2 n = 0 ( 1 ( 12 n + 1 ) 2 + 1 ( 12 n + 5 ) 2 1 ( 12 n + 7 ) 2 1 ( 12 n + 11 ) 2 ) n = 0 ( 1 ( 12 n + 3 ) 2 1 ( 12 n + 9 ) 2 ) = 1 9 n = 0 ( 1 ( 4 n + 1 ) 2 1 ( 4 n + 3 ) 2 ) G 2 n = 0 1 18 ( 1 ( 4 n + 1 ) 2 1 ( 4 n + 3 ) 2 ) = G 9 G 2 G 18 = 2 3 G \frac{L}{3}=-\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{1}{(12n+1)^2}+\frac{1}{(12n+5)^2}-\frac{1}{(12n+7)^2}-\frac{1}{(12n+11)^2}\right)-\sum_{n=0}^{\infty}\left(\frac{1}{(12n+3)^2}-\frac{1}{(12n+9)^2}\right)\\=-\frac{1}{9}\sum_{n=0}^{\infty}\left(\frac{1}{(4n+1)^2}-\frac{1}{(4n+3)^2}\right)-\frac{G}{2}-\sum_{n=0}^{\infty}\frac{1}{18}\left(\frac{1}{(4n+1)^2}-\frac{1}{(4n+3)^2}\right)=-\frac{G}{9}-\frac{G}{2}-\frac{G}{18}=-\frac{2}{3}G so we have 0 π 4 ln tan ( x 3 ) = 2 G \int_0^{\frac{\pi}{4}} \ln\tan\left(\frac{x}{3}\right)=-2G giving us 2 G + 2 G = 0 -2G+2G=0 .


Here n = 0 ( 1 ( 4 n + 1 ) 2 1 ( 4 n + 3 ) 2 ) = 1 4 ( ψ 1 ( 1 4 ) ψ 1 ( 3 4 ) ) = 1 16 ( π 2 + 8 G π 2 + 8 G ) = G \sum_{n=0}^{\infty}\left(\frac{1}{(4n+1)^2}-\frac{1}{(4n+3)^2}\right)=\frac{1}{4}\left(\psi^1\left(\frac{1}{4}\right)-\psi^1\left(\frac{3}{4}\right)\right)=\frac{1}{16}\left(\pi^2+8G-\pi^2+8G\right)=G Or n = 0 1 ( 4 n + 3 ) 2 = n = 1 1 n 2 ( n = 1 1 ( 2 n ) 2 + n = 1 1 ( 4 n 3 ) 2 ) = π 2 8 ( n = 0 ( 1 ) n ( 2 n 1 ) 2 + n = 0 1 ( 4 n + 3 ) 2 ) n = 0 1 ( 4 n + 3 ) 2 = π 2 16 G 2 \begin{aligned}\sum_{n=0}^{\infty}\dfrac{1}{(4n+3)^2}&= \sum_{n=1}^{\infty}\dfrac{1}{n^2}-\left(\sum_{n=1}^{\infty}\dfrac{1}{(2n)^2}+\sum_{n=1}^{\infty}\dfrac{1}{(4n-3)^2}\right)\\&= \dfrac{\pi^2}{8}- \left(\sum_{n=0}^{\infty}\dfrac{(-1)^n}{(2n-1)^2}+\sum_{n=0}^{\infty}\dfrac{1}{(4n+3)^2}\right)\\&\implies \sum_{n=0}^{\infty}\dfrac{1}{(4n+3)^2} =\dfrac{\pi^2}{16}-\dfrac{G}{2} \end{aligned} and similarly n 0 1 ( 4 n + 1 ) 2 = π 2 16 + G 2 \displaystyle \sum_{n\geq 0}\frac{1}{(4n+1)^2}=\frac{\pi^2}{16}+\frac{G}{2} .

Nicely done!!!

Aaghaz Mahajan - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...