Tan's rectangles

Geometry Level 3

How many distinct rectangles with positive integer length sides have area equal to perimeter?

This problem is shared by Tan K.

Details and assumptions

A square is considered a rectangle, and a rectangle with sides 3 and 8 is not distinct from a rectangle with sides 8 and 3.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

11 solutions

Patrick Lin
Aug 18, 2013

Call the sides of the rectangle a a and b b . Then we have 2 a + 2 b = a b 2a + 2b = ab , which factors into ( a 2 ) ( b 2 ) = 4 (a - 2)(b - 2) = 4 . The only solutions are (3, 6) and (4, 4) since (6, 3) is not considered unique, so the answer is 2.

This is much better than my solution. Good job :))

Wilbert James Futalan - 7 years, 9 months ago
Louie Tan Yi Jie
Aug 22, 2013

Let the dimensions of the rectangle be a a by b b .

Area must be equal to perimeter:

a b = 2 a + 2 b a = 2 b b 2 = 2 + 4 b 2 a b=2 a+2 b\\ a=\frac{2 b}{b-2}=2+\frac{4}{b-2}

a a and b b must be integers. Hence 4 b 2 \frac{4}{b-2} must be an integer. b 2 b-2 must be a factor of 4 4 .

b 2 = { 1 , 2 , 4 } b = { 3 , 4 , 6 } b-2=\{1,2,4\}\\ b=\{3,4,6\}

Back substituting:

a = { 6 , 4 , 3 } a=\{6,4,3\}

Since { 3 , 6 } \{3,6\} and { 6 , 3 } \{6,3\} are considered the same rectangle, we are left with 2 solutions, { 3 , 6 } \{3,6\} and { 4 , 4 } \{4,4\} .

Juan Rodrígez
Aug 19, 2013

2a + 2b = ab. Factorized this is: (a-2)(b-2) = 4 Since 4 = 2x2 / 4x1

a = 6,4 b = 3,4

Ho Wei Haw
Aug 25, 2013

We shall let x x and y y be the sides of the rectangle. This allows us to form the following equation

x y = 2 x + 2 y xy = 2x+2y

y = 2 x x 2 \Rightarrow y= \frac{2x}{x-2}

y = 2 + 4 x 2 \Rightarrow y= 2+\frac{4}{x-2}

Clearly, y y will only be an integer if 4 x 2 \frac{4}{x-2} is an integer.

So, in order for 4 x 2 \frac{4}{x-2} to be an integer, x 2 x-2 must be an integer and x 2 4 x-2 \leq 4

This will yield us the following 2 solutions of ( x , y ) (x,y) , ( 4 , 4 ) (4,4) and ( 6 , 3 ) (6,3)

Hence, there will only be 2 distinct rectangles.

Typo: x - 2 must be an even integer*

Ho Wei Haw - 7 years, 9 months ago
Oscar Harmon
Aug 20, 2013

x y = 2 x + 2 y y = 2 x x 2 = 2 + 4 x 2 xy=2x+2y\Rightarrow y=\frac{2x}{x-2}=2+\frac{4}{x-2}

Using factors of 4 4 , we get ( 3 , 6 ) , ( 4 , 4 ) , ( 6 , 3 ) (3,6),(4,4),(6,3) for a total of 2 \boxed{2} distinct rectangles.

Diógenes Wallis
Aug 19, 2013

Está bem claro no enunciado que sendo a e b, os lados de um retângulo, temos a seguinte a relação: 2a + 2b = a.b >> Isolando, 2(a + b) = a.b >> 2 = a.b/a + b >> Note que a.b é múltiplo de 2, logo a.b = 2n >> Substituindo: 2a + 2b = 2n >> a + b = n >> Chega-se no sistema: a + b = n e a.b = 2n >> Daí, a² - na + 2n = 0 >> n tem que ser um número natural, bem como o termo a, substituindo "a" por 3,4 e 6 o problema tem a solução desejada. Note que a=3 b=6 (é a mesma coisa que b=3 e a=6) e a=4 b=4 satisfazem a relação, logo temos 2 retângulos.

Sean: a y b: lados del rectangulo Lo partimos el problema en dos casos: -Cuando a=b 4a=a a, entonces a=4 -Cuando 'a' sea diferente a 'b' 2(a+b)=a b Notamos que ninguno de ellos puede tomar el valor de 'uno' puesto que : '2(a+1)' siempre sera diferente que 'a' Notamos que si alguno de ellos toma el valor de dos pasa esto: Para a=2 b=2 nos resulta que 8 es diferente a 4 Para a=2 b=3 nos resulta que 10 es diferente a 6 y asi... mientras en un lado aumento de dos en dos en dos (8,10,...) en otro tambien (4,6,....) por lo que nunca se llegara a una igualdad. Notamos que si alguno de ellos toma el valor '3' pasa esto: Para a=3 b=3 Nos resulta que 18 es igual a 9 Para a=3 b=4 Nos resulta que 14 es igual a 12 Para a=3 b=5 Nos resulta que 16 es igual a 15 Para a=3 b=6 Nos resulta que 18 es igual a 18 CUMPLE Para a=3 b=7 Nos resulta que 20 es igual a 21... y asi notamos que se forman dos sucesiones aritmeticas de razon 2 y 3 para este caso solo se cumple la igualdad en (a=3 y b=6) Notamos que si alguno toma el valor de 4 ocurrira esto: para a=4 b=4 Resultara que 16 igual que 16 (CUANDO SEA UN CUADRADO) para a=4 b=5 resultara que 18 igual que 20 para a=4 B=6 resulara que 20 es igual a 24... notamos que ahora que se formaron dos sucesiones aritmeticas de razon 2 y 4 y que solo se dara la igualdad para el caso (a=4 b=4) Y asi se formaran varias suciones aritmeticas pero nunca se llegara a la igualdad POR LO TANTO SOLO EXISTIRAN DOS CASOS CUANDO a=3 b=6 y cuando a=4 b=4

Zak Marcone
Aug 23, 2013

If a,b are the sides of the rectangle then the following must be true: ab = 2(a+b). Immediately we know that neither a nor b can take the value of 1 b/c if a = 1 then the area must be equal to b which is much less than the perimeter. Additionally we realize that neither a nor b can take on a value of 2 b/c then the area would be equal to 2b which is still much less than the perimeter.

Let us now consider the case where a = 3. This implies that 3b = 2(3+b) = 6+2b. Subtracting 2b from both sides results in b = 6. This is one instance that satisfies Tan's rectangles. This implies that for an integer n the following must be an integer 2n/(n-2) to satisfy Tan's rectangles (This was obtained solely from thinking about the algebra involved in solving for b). This statement is only true for one other number, 4 (4 could also have been obtained by solving the equation a^2 = 4a as all squares are rectangles). Therefore there are only two rectangles possible that satisfy Tan's demanding requests :)

Krishna Jha
Aug 19, 2013

Let the length of the rectangle be l l and breadth be b b .

Then, we need to find out the solutions of the equation 2 ( l + b ) = l b 2(l+b)=l*b .

Taking l on the x axis and b on the y axis, we can plot a graph of the above equation..

We have only two points on the curve with integer coordinates i.e ( 4 , 4 ) (4,4) and ( 6 , 3 ) (6,3)

So the required number of rectangles= 2 \boxed{2}

Moderator note:

How do you know that "We have only two points on the curve with integer coordinates"? Of course, we also have ( 3 , 6 ) (3, 6) as another possible point. How do we know that we have not missed out on other points?

@Challenge master..Yes... ( 3 , 6 ) (3,6) and ( 6 , 3 ) (6,3) are two solutions but not unique rectangles.. Its easy to see that we have not missed any other point..its because it has asymptotes at x = 2 x=2 and y = 2 y=2 ... and goes too steep and too shallow respectively to approach an integer value for higher values of x and y...

Krishna Jha - 7 years, 9 months ago

Log in to reply

Good argument which should be included in your solution.

For completeness, you clearly explain why too steep / too shallow is. One way is as follows:

  1. x > 2 , y > 2 x > 2, y > 2 .
  2. If x = 3 , y = 6 x = 3, y = 6 .
  3. If x = 4 , y = 4 x = 4, y = 4 .
  4. If x = 5 x = 5 , y y is not an integer.
  5. If x = 6 , y = 3 x = 6, y = 3 .
  6. If x 7 x \geq 7 then 2 < y < 3 2 < y < 3 hence is not an integer.

Calvin Lin Staff - 7 years, 9 months ago
Vikash Kumar
Aug 19, 2013

Let a & b are the sides of a rectangle.

So,a*b=2(a+b) => a+b = ab/2;-------(1)

   a-b=(a+b)^2-2ab -------(2)

from eq(1),we find a quadratic equation in terms of a or b & for a & b should be zero,..Discriminant should be an integer. After solving this inequality,we find 2 &3 are satisfying it. So ,ans=2

Let l=length; w=width.

lw = 2l + 2w w=2l / (l - 2) = 2 + 4 / (l - 2)

For w to be an integer, 4 / (l - 2) has to be an integer. This gives 3 possible values of l: l = 3 w=6 l = 4 w=4 l = 6 w=3

There are 2 distinct combinations. Hence, the answer is 2.

awesome man...

Kiran K - 7 years, 9 months ago

There can be another solution :- 2a+2b=ab, which means that ab-2a-2b=0 add 4 to both sides and factorize, giving, (2-a)(2-b)=4, turns into much of a number theory problems, keeping in mind that the sides of length are only positive integers, We get two solutions.

Utkarsh Mehra - 7 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...