Tasty Chicken Nuggets

McDonald's sells packets of Chicken Nuggets in three different packet types.

  1. Packet Mini - 6 Nuggets

  2. Packet Single - 9 Nuggets.

  3. Packet Family - 20 Nuggets.

What is the maximum number of nuggets that cannot be ordered from the outlet?

Image Credit: Wikimedia McDonald's


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We shall first study numbers from 1 to 100. Except 3, any number divisible by 3 can be packed with combination of 6 and 9.
S o 4 6 + 20 = 44 , . . . . . . . 5 9 = 45 , . . . . . . . 2 20 + 6 = 46. 44 2 ( m o d 3 ) . . . . . . . . . 45 0 ( m o d 3 ) , . . . . . . . . . . 46 1 ( m o d 3 ) . A n d w e c a n a d d 3 a n d i t s m u l t i p l e t o r e a c h 100 , a n d 5 20 t o a n y n u m b e r o f h u n d r e d s . a l l n u m b e r s 44 a n d g r e a t e r c a n b e p a c k e d . T h e r e i s n o w a y t o p a c k 43. So ~4*6+20=44,.......5*9=45,.......2*20+6=46. \\ 44 \equiv 2 \pmod 3.........45 \equiv 0 \pmod 3,..........46 \equiv 1 \pmod 3.\\ And ~we~can~add~3~and~its~multiple~to~reach~100,~~and~5*20~to~ any~number~of ~hundreds. \\ \implies~all~numbers~44~and~greater~can~be~packed.\\ There~ is~ no~ way~ to~ pack~\Large~~~\color{#D61F06}{43}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...