Tasty Logarithm #3

Algebra Level 5

log 225 x + log 64 y = 4 log x 225 log y 64 = 1 \begin{aligned} \large\log_{225}x+\log_{64}y&=&\large4 \\ \large\log_{x}225-\log_{y}64&=&\large1 \end{aligned}

The solutions to the system of equations above are ( x 1 , y 1 ) (x_1,y_1) and ( x 2 , y 2 ) (x_2,y_2) . Find log 30 ( x 1 y 1 x 2 y 2 ) \log_{30}\left(x_1y_1x_2y_2\right) .

This is the part of this .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Ner
May 12, 2015

let log 225 x \log _{ 225 }{ x } = p p and log 64 y \log _{ 64 }{ y } = q q

p p + q q =4

1 p \frac { 1 }{ p } - 1 q \frac { 1 }{ q } =1

solving both the equations we obtain

p p = 3 ± 5 3\pm \sqrt { 5 } , q q = 1 ± 5 1\pm \sqrt { 5 }

x 1 { x }_{ 1 } = 225 3 + 5 { 225 }^{ 3+\sqrt { 5 } } , x 2 { x }_{ 2 } = 225 3 5 { 225 }^{ 3-\sqrt { 5 } } , y 1 { y }_{ 1 } = 64 1 + 5 { 64 }^{ 1+\sqrt { 5 } } , y 2 { y }_{ 2 } = 64 1 5 { 64 }^{ 1-\sqrt { 5 } } .

x 1 x 2 y 1 y 2 { x }_{ 1 }{ x }_{ 2 }{ y}_{ 1 }{ y }_{ 2 } = 225 3 + 5 . 225 3 5 . 64 1 + 5 . 64 1 5 { 225 }^{ 3+\sqrt { 5 } }.{ 225 }^{ 3-\sqrt { 5 } }.{ 64 }^{ 1+\sqrt { 5 } }.{ 64 }^{ 1-\sqrt { 5 } } = 225 6 . 64 2 { 225 }^{ 6 }.{ 64 }^{ 2 } = 15 12 . 2 12 {15 }^{ 12 }.{ 2 }^{ 12 } = 30 12 { 30 }^{ 12 }

log 30 ( x 1 x 2 y 1 y 2 ) \log _{ 30 }{ { \left( { { x }_{ 1 }{ x }_{ 2 }{ y }_{ 1 }{ y }_{ 2 } } \right) } } = log 30 ( 30 12 ) \log _{ 30 }{ { \left( { { 30 }^{ 12 } } \right) } } = 12 \huge\boxed { 12 }

Did the same .

Shubhendra Singh - 6 years, 1 month ago
Noel Lo
May 28, 2015

Let l o g 225 x = a log_{225} x = a and l o g 64 y = b log_{64} y= b

a + b = 4 a+b = 4

1 a 1 b = 1 \frac{1}{a} - \frac{1}{b}=1

Solving we have the two quadratic equations, we have:

a 2 6 a + 4 = 0 a^2 - 6a +4 = 0 and b 2 2 b 4 = 0 b^2 - 2b - 4 = 0

So we have a 1 + a 2 = 6 a_1 + a_2 = 6 while b 1 + b 2 = 2 b_1 + b_2 = 2

This means:

l o g 225 x 1 + l o g 225 x 2 = 6 log_{225} x_1 + log_{225} x_2 = 6 and l o g 64 y 1 + l o g 64 y 2 = 2 log_{64} y_1 + log_{64} y_2 = 2

l o g 225 ( x 1 x 2 ) = 6 log_{225} (x_1 x_2) = 6 and l o g 64 ( y 1 y 2 ) = 2 log_{64} (y_1 y_2) = 2

Hence x 1 x 2 = 22 5 6 x_1 x_2 = 225^6 and y 1 y 2 = 6 4 2 y_1 y_2 =64^2

l o g 30 ( x 1 x 2 y 1 y 2 ) = l o g 30 ( 22 5 6 6 4 2 ) = l o g 30 ( ( 1 5 2 ) 6 ( 2 6 ) 2 ) log_{30} (x_1 x_2 y_1 y_2) = log_{30} (225^6 64^2) = log_{30} ((15^2)^6 (2^6)^2)

= l o g 30 ( 1 5 12 2 12 ) = l o g 30 ( 15 × 2 ) 12 = l o g 30 ( 3 0 12 ) = 12 = log_{30} (15^{12} 2^{12}) = log_{30} (15 \times 2)^{12} = log_{30} (30^{12}) = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...