lo g 2 2 5 x + lo g 6 4 y lo g x 2 2 5 − lo g y 6 4 = = 4 1
The solutions to the system of equations above are ( x 1 , y 1 ) and ( x 2 , y 2 ) . Find lo g 3 0 ( x 1 y 1 x 2 y 2 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same .
Let l o g 2 2 5 x = a and l o g 6 4 y = b
a + b = 4
a 1 − b 1 = 1
Solving we have the two quadratic equations, we have:
a 2 − 6 a + 4 = 0 and b 2 − 2 b − 4 = 0
So we have a 1 + a 2 = 6 while b 1 + b 2 = 2
This means:
l o g 2 2 5 x 1 + l o g 2 2 5 x 2 = 6 and l o g 6 4 y 1 + l o g 6 4 y 2 = 2
l o g 2 2 5 ( x 1 x 2 ) = 6 and l o g 6 4 ( y 1 y 2 ) = 2
Hence x 1 x 2 = 2 2 5 6 and y 1 y 2 = 6 4 2
l o g 3 0 ( x 1 x 2 y 1 y 2 ) = l o g 3 0 ( 2 2 5 6 6 4 2 ) = l o g 3 0 ( ( 1 5 2 ) 6 ( 2 6 ) 2 )
= l o g 3 0 ( 1 5 1 2 2 1 2 ) = l o g 3 0 ( 1 5 × 2 ) 1 2 = l o g 3 0 ( 3 0 1 2 ) = 1 2 .
Problem Loading...
Note Loading...
Set Loading...
let lo g 2 2 5 x = p and lo g 6 4 y = q
p + q =4
p 1 - q 1 =1
solving both the equations we obtain
p = 3 ± 5 , q = 1 ± 5
x 1 = 2 2 5 3 + 5 , x 2 = 2 2 5 3 − 5 , y 1 = 6 4 1 + 5 , y 2 = 6 4 1 − 5 .
x 1 x 2 y 1 y 2 = 2 2 5 3 + 5 . 2 2 5 3 − 5 . 6 4 1 + 5 . 6 4 1 − 5 = 2 2 5 6 . 6 4 2 = 1 5 1 2 . 2 1 2 = 3 0 1 2
lo g 3 0 ( x 1 x 2 y 1 y 2 ) = lo g 3 0 ( 3 0 1 2 ) = 1 2