Tasty radicals & exponents

Algebra Level 4

4 x 2 2 + x 5 2 x 1 + x 2 2 = 6 \large 4^{\sqrt{x^2-2}+x}-5\cdot 2^{x-1+\sqrt{x^2-2}}=6

Find the sum of all real roots for the equation above.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Sep 3, 2015

Let y = 2 x 2 2 + x \color{#D61F06}{y=2^{\sqrt{x^2-2}+x}}

From equation

4 x 2 2 + x 5 2 x 1 + x 2 2 = 6 2 2 ( x 2 2 + x ) 5 2 x 2 2 + x 2 1 = 6 ( 2 x 2 2 + x ) 2 5 2 2 x 2 2 + x = 6 y 2 5 2 y = 6 2 y 2 5 y 12 = 0 ( 2 y + 3 ) ( y 4 ) = 0 y = 3 2 , 4 \begin{aligned}4^{\sqrt{x^2-2}+x}-5\cdot2^{x-1+\sqrt{x^2-2}}=&\ 6\\2^{2(\sqrt{x^2-2}+x)}-5\cdot2^{\sqrt{x^2-2}+x}\cdot2^{-1}=&\ 6\\\left(\color{#D61F06}{2^{\sqrt{x^2-2}+x}}\right)^2-\dfrac52\cdot\color{#D61F06}{2^{\sqrt{x^2-2}+x}}=&\ 6\\\color{#D61F06}y^2-\dfrac52\color{#D61F06}y=&\ 6\\2\color{#D61F06}y^2-5\color{#D61F06}y-12=&\ 0\\(2\color{#D61F06}y+3)(\color{#D61F06}y-4)=&\ 0\\\color{#D61F06}y=&\ -\dfrac32,\color{#D61F06}4\end{aligned}

But the value of y \color{#D61F06}y cannot be a negative. Thus,

2 x 2 2 + x = 4 2 x 2 2 + x = 2 2 x 2 2 + x = 2 x 2 2 = 2 x x 2 2 = 4 4 x + x 2 6 = 4 x x = 3 2 = 1.5 \begin{aligned}2^{\sqrt{x^2-2}+x}=&\ 4\\\color{#624F41}2^{\sqrt{x^2-2}+x}=&\ \color{#624F41}2^2\\\sqrt{x^2-2}+x=&\ 2\\\sqrt{x^2-2}=&\ 2-x\\x^2-2=&\ 4-4x+x^2\\-6=&\ -4x\\x=&\ \dfrac32=\boxed{1.5}\end{aligned}

Kemal Firdaus
Sep 3, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...