Tasty Series

Calculus Level 3

i = 1 9 i 2 2 i = ? \large\displaystyle \sum_{i=1}^9\ i^{2} \cdot 2^{i}=\ ?


The answer is 67578.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dhananjay Singh
Aug 23, 2015

Consider the series y = x + x 2 + x 3 + x 4 + . . . . . . . y=x+x^2+x^3+x^4+....... differentiating w.r.t. x d y d x = 1 + 2 x + 3 x 2 + 4 x 3 + . . . . \frac{dy}{dx}=1+2x+3x^2+4x^3+.... multiplying x then again differentiating d ( x d y d x ) d x = 1 + 2 2 x + 3 2 x 2 + 4 2 x 3 + . . . . . . . . . . \frac{d(x\frac{dy}{dx})}{dx}=1+2^2x+3^2x^2+4^2x^3+.......... multiplying x and placing x=2 we get the required series as x d ( x d y d x ) d x = 1.1 + 2 2 . 2 2 + 3 2 . 2 3 + 4 2 . 2 4 + . . . . . . x\frac{d(x\frac{dy}{dx})}{dx}=1.1+2^2.2^2+3^2.2^3+4^2.2^4+...... putting y = x ( 1 x n ) 1 x y=x\frac{(1-x^n)}{1-x} we get s u m = 2 n + 1 ( n ) . ( n 2 ) + 6. ( 2 n 1 ) sum=2^{n+1}(n).(n-2)+6.(2^n-1) put n=9 to get the desired result as 67578 \boxed{67578}

Saalay ki 100 rank h IIT may chutiya insaan

Satyam Tripathi - 4 years, 7 months ago
Syed Baqir
Aug 27, 2015

It is just : 1 2 + 4 2^2 + 9 * 2^3+ ... + 9^2 + 2^9 = 67578

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...