Taxi route counts #4

Geometry Level pending

d = 2 d=2 and V = ( 3 , 3 ) \vec{V}=(3,3) .

There are a positive integer number, d d , of independent vectors, V i \vec{V}_i , where i i runs from 1 to d d . A trip starts from the appropriate 0 \vec{0} of d d components and goes to a destination vector of d d positive integer components. A step of a trip consists of adding 1 1 to a single component of the taxi's current position vector which was initially 0 \vec{0} of d d components. How many distinct routes would accomplish this trip?


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Make a grid of points that is 4 by 4. This is one more than 3 because zero is included. Starting in one corner, label the points when both routes to the point are available with the sum of the two ways to the point. Continue this process until the far corner is reached. If you did this correctly, then you will see the answer is 20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...