Taylor Series

Algebra Level 3

x 4 3 x 2 = n = 1 x 2 n + a b n , x < 3 \large \frac { { x }^{ 4 } }{ 3-{ x }^{ 2 } } =\sum _{ n=1 }^{ \infty }{ \frac { { x }^{ 2n+a } }{ b^{ n } } }, \quad |x|<\sqrt { 3 }

Given this relationship, find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 4 3 x 2 = x 4 ( 3 x ) ( 3 + x ) = x 3 2 ( 1 3 x 1 3 + x ) = x 3 2 3 ( 1 1 x 3 1 1 + x 3 ) = x 3 2 3 [ ( 1 + x 3 + x 2 3 + x 3 3 3 + x 4 9 + ) ( 1 x 3 + x 2 3 x 3 3 3 + x 4 9 ) ] for x < 3 = x 3 2 3 [ 2 x 3 + 2 x 3 3 3 + 2 x 5 9 3 + ] = x 3 [ x 3 + x 3 3 2 + x 5 3 3 + ] = n = 1 x 2 n + 2 3 n \begin{aligned} \frac {x^4}{3-x^2} & = \frac {x^4}{(\sqrt 3-x)(\sqrt 3+x)} \\ & = \frac {x^3}2 \left(\frac 1{\sqrt 3-x}-\frac 1{\sqrt 3+x}\right) \\ & = \frac {x^3}{2\sqrt 3} \left(\frac 1{1-\frac x{\sqrt 3}}-\frac 1{1+\frac x{\sqrt 3}}\right) \\ & = \frac {x^3}{2\sqrt 3} \left[ \left(1+\frac x{\sqrt 3} + \frac {x^2}3 + \frac {x^3}{3\sqrt 3} + \frac {x^4}9 + \cdots \right) - \left(1-\frac x{\sqrt 3} + \frac {x^2}3 - \frac {x^3}{3\sqrt 3} + \frac {x^4}9 - \cdots \right) \right] & \small \color{#3D99F6} \text{for }|x| < \sqrt 3 \\ & = \frac {x^3}{2\sqrt 3} \left[ \frac {2x}{\sqrt 3} + \frac {2x^3}{3\sqrt 3} + \frac {2x^5}{9\sqrt 3} + \cdots \right] \\ & = x^3 \left[ \frac x3 + \frac {x^3}{3^2} + \frac {x^5}{3^3} + \cdots \right] \\ & = \sum_{n=1}^\infty \frac {x^{2n+2}}{3^n} \end{aligned}

a + b = 2 + 3 = 5 \implies a+b = 2+3 = \boxed{5}

Tristan Goodman
Jul 4, 2019

Dividing the terms in both the numerator and the denominator of the given rational expression by 3 reveals it to be a closed form of an infinite geometric series.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...