n = 2 ∑ ∞ ζ ( n ) z n = − ∫ 0 1 a z x b + 1 − c x − z + b − c d x
The equation above holds true for ∣ z ∣ < 1 and integer constants a , b and c .
Find the value of a + b + c .
Notation : ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Intended solution(+1)
Shouldn't the final answer be ( − ∫ 0 1 z x − 1 x − z − 1 ) ?
n = 2 ∑ ∞ ζ ( n ) z n = n = 2 ∑ ∞ z n k = 1 ∑ ∞ k n 1 = k = 1 ∑ ∞ n = 2 ∑ ∞ ( k z ) n = k = 1 ∑ ∞ 1 − k z ( k z ) 2 = k = 1 ∑ ∞ k ( k − z ) z 2 = k = 1 ∑ ∞ ( k − z z − k z ) = k = 1 ∑ ∞ z ∫ 0 1 ( x k − z − 1 − x k − 1 ) d x = ∫ 0 1 z k = 1 ∑ ∞ ( x k − z − 1 − x k − 1 ) d x = − z ∫ 0 1 x − 1 x − z − 1 d x
Problem Loading...
Note Loading...
Set Loading...
The Taylor series and integral forms of digamma function ψ ( z ) , are given as follows:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ ψ ( 1 − z ) = − γ − k = 1 ∑ ∞ ζ ( k + 1 ) z k ψ ( 1 − z ) = − γ + ∫ 0 1 1 − x 1 − x − z d x . . . ( 1 ) . . . ( 2 )
Where γ is Euler-Mascheroni constant.
⇒ k = 1 ∑ ∞ ζ ( k + 1 ) z k k = 1 ∑ ∞ ζ ( k + 1 ) z k + 1 n = 2 ∑ ∞ ζ ( n ) z n = − ∫ 0 1 1 − x 1 − x − z d x = − z ∫ 0 1 1 − x 1 − x − z d x = − ∫ 0 1 z x − 1 x − z − 1 d x
⇒ a + b + c = 1 + 0 + 1 = 2