Taylor series of digamma

Calculus Level 5

n = 2 ζ ( n ) z n = 0 1 a z x z + b c x b + 1 c d x \large \sum_{n=2}^\infty \zeta(n)z^n=-\int_0^1 az\dfrac{x^{-z+b}-c}{x^{b+1}-c} \, dx

The equation above holds true for z < 1 |z| < 1 and integer constants a , b a,b and c c .

Find the value of a + b + c a+b+c .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 23, 2016

The Taylor series and integral forms of digamma function ψ ( z ) \psi (z) , are given as follows:

{ ψ ( 1 z ) = γ k = 1 ζ ( k + 1 ) z k . . . ( 1 ) ψ ( 1 z ) = γ + 0 1 1 x z 1 x d x . . . ( 2 ) \begin{cases} \displaystyle \psi (1-z) = - \gamma - \sum_{k=1}^\infty \zeta (k+1) z^k & ...(1) \\ \displaystyle \psi (1-z) = - \gamma + \int_0^1 \frac{1-x^{-z}}{1-x} dx & ...(2) \end{cases}

Where γ \gamma is Euler-Mascheroni constant.

k = 1 ζ ( k + 1 ) z k = 0 1 1 x z 1 x d x k = 1 ζ ( k + 1 ) z k + 1 = z 0 1 1 x z 1 x d x n = 2 ζ ( n ) z n = 0 1 z x z 1 x 1 d x \begin{aligned} \Rightarrow \sum_{k=1}^\infty \zeta (k+1) z^k & = - \int_0^1 \frac{1-x^{-z}}{1-x} dx \\ \sum_{k=1}^\infty \zeta (k+1) z^{k+1} & = - z \int_0^1 \frac{1-x^{-z}}{1-x} dx \\ \sum_{n=2}^\infty \zeta (n) z^{n} & = - \int_0^1 z \frac{x^{-z}-1}{x-1} dx \end{aligned}

a + b + c = 1 + 0 + 1 = 2 \Rightarrow a + b + c = 1 + 0 + 1 = \boxed{2}

Intended solution(+1)

Aareyan Manzoor - 5 years, 2 months ago

Shouldn't the final answer be ( 0 1 z x z 1 x 1 ) \left(- \displaystyle \int_{0}^{1} z \frac{x^{-z}-1}{x-1}\right) ?

Ariel Gershon - 5 years, 2 months ago

Log in to reply

Yes, thanks.

Chew-Seong Cheong - 5 years, 2 months ago
Ariel Gershon
Mar 25, 2016

n = 2 ζ ( n ) z n = n = 2 z n k = 1 1 k n = k = 1 n = 2 ( z k ) n = k = 1 ( z k ) 2 1 z k = k = 1 z 2 k ( k z ) = k = 1 ( z k z z k ) = k = 1 z 0 1 ( x k z 1 x k 1 ) d x = 0 1 z k = 1 ( x k z 1 x k 1 ) d x = z 0 1 x z 1 x 1 d x \begin{aligned} \sum_{n=2}^{\infty} \zeta(n)z^n & = \sum_{n=2}^{\infty} z^n \sum_{k=1}^{\infty} \frac{1}{k^n} \\ & = \sum_{k=1}^{\infty} \sum_{n=2}^{\infty} \left(\frac{z}{k}\right)^n \\ & = \sum_{k=1}^{\infty} \frac{\left(\frac{z}{k}\right)^2}{1 - \frac{z}{k}}\\ & = \sum_{k=1}^{\infty} \frac{z^2}{k(k-z)}\\ & = \sum_{k=1}^{\infty} \left(\frac{z}{k-z} - \frac{z}{k}\right)\\ & = \sum_{k=1}^{\infty} z \int_{0}^{1} \left(x^{k-z-1}-x^{k-1}\right)dx\\ & = \int_{0}^{1} z \sum_{k=1}^{\infty} \left(x^{k-z-1}-x^{k-1}\right) dx\\ & = -z \int_{0}^{1} \frac{x^{-z} - 1}{x - 1}dx \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...